Create run_inference_train_x.py
Browse files- anydoor/run_inference_train_x.py +270 -0
anydoor/run_inference_train_x.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import einops
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
from pytorch_lightning import seed_everything
|
7 |
+
from cldm.model import create_model, load_state_dict
|
8 |
+
from cldm.ddim_hacked import DDIMSampler
|
9 |
+
from cldm.hack import disable_verbosity, enable_sliced_attention
|
10 |
+
from datasets.data_utils import *
|
11 |
+
cv2.setNumThreads(0)
|
12 |
+
cv2.ocl.setUseOpenCL(False)
|
13 |
+
import albumentations as A
|
14 |
+
from omegaconf import OmegaConf
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
|
18 |
+
save_memory = False
|
19 |
+
disable_verbosity()
|
20 |
+
if save_memory:
|
21 |
+
enable_sliced_attention()
|
22 |
+
|
23 |
+
|
24 |
+
config = OmegaConf.load('./configs/inference.yaml')
|
25 |
+
model_ckpt = config.pretrained_model
|
26 |
+
model_config = config.config_file
|
27 |
+
|
28 |
+
model = create_model(model_config ).cpu()
|
29 |
+
model.load_state_dict(load_state_dict(model_ckpt, location='cuda'))
|
30 |
+
model = model.cuda()
|
31 |
+
ddim_sampler = DDIMSampler(model)
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
def aug_data_mask(image, mask):
|
36 |
+
transform = A.Compose([
|
37 |
+
A.HorizontalFlip(p=0.5),
|
38 |
+
A.RandomBrightnessContrast(p=0.5),
|
39 |
+
])
|
40 |
+
transformed = transform(image=image.astype(np.uint8), mask = mask)
|
41 |
+
transformed_image = transformed["image"]
|
42 |
+
transformed_mask = transformed["mask"]
|
43 |
+
return transformed_image, transformed_mask
|
44 |
+
|
45 |
+
|
46 |
+
def process_pairs(ref_image, ref_mask, tar_image, tar_mask):
|
47 |
+
# ========= Reference ===========
|
48 |
+
# ref expand
|
49 |
+
ref_box_yyxx = get_bbox_from_mask(ref_mask)
|
50 |
+
|
51 |
+
# ref filter mask
|
52 |
+
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
|
53 |
+
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)
|
54 |
+
|
55 |
+
y1,y2,x1,x2 = ref_box_yyxx
|
56 |
+
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
|
57 |
+
ref_mask = ref_mask[y1:y2,x1:x2]
|
58 |
+
|
59 |
+
|
60 |
+
ratio = np.random.randint(12, 13) / 10
|
61 |
+
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
|
62 |
+
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
|
63 |
+
|
64 |
+
# to square and resize
|
65 |
+
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
|
66 |
+
masked_ref_image = cv2.resize(masked_ref_image, (224,224) ).astype(np.uint8)
|
67 |
+
|
68 |
+
ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False)
|
69 |
+
ref_mask_3 = cv2.resize(ref_mask_3, (224,224) ).astype(np.uint8)
|
70 |
+
ref_mask = ref_mask_3[:,:,0]
|
71 |
+
|
72 |
+
# ref aug
|
73 |
+
masked_ref_image_aug = masked_ref_image #aug_data(masked_ref_image)
|
74 |
+
|
75 |
+
# collage aug
|
76 |
+
masked_ref_image_compose, ref_mask_compose = masked_ref_image, ref_mask #aug_data_mask(masked_ref_image, ref_mask)
|
77 |
+
masked_ref_image_aug = masked_ref_image_compose.copy()
|
78 |
+
ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1)
|
79 |
+
ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255)
|
80 |
+
|
81 |
+
# ========= Target ===========
|
82 |
+
tar_box_yyxx = get_bbox_from_mask(tar_mask)
|
83 |
+
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2])
|
84 |
+
|
85 |
+
# crop
|
86 |
+
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=[1.5, 3]) #1.2 1.6
|
87 |
+
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
|
88 |
+
y1,y2,x1,x2 = tar_box_yyxx_crop
|
89 |
+
|
90 |
+
cropped_target_image = tar_image[y1:y2,x1:x2,:]
|
91 |
+
tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop)
|
92 |
+
y1,y2,x1,x2 = tar_box_yyxx
|
93 |
+
|
94 |
+
# collage
|
95 |
+
ref_image_collage = cv2.resize(ref_image_collage, (x2-x1, y2-y1))
|
96 |
+
ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1))
|
97 |
+
ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8)
|
98 |
+
|
99 |
+
collage = cropped_target_image.copy()
|
100 |
+
collage[y1:y2,x1:x2,:] = ref_image_collage
|
101 |
+
|
102 |
+
collage_mask = cropped_target_image.copy() * 0.0
|
103 |
+
collage_mask[y1:y2,x1:x2,:] = 1.0
|
104 |
+
|
105 |
+
# the size before pad
|
106 |
+
H1, W1 = collage.shape[0], collage.shape[1]
|
107 |
+
cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8)
|
108 |
+
collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8)
|
109 |
+
collage_mask = pad_to_square(collage_mask, pad_value = -1, random = False).astype(np.uint8)
|
110 |
+
|
111 |
+
# the size after pad
|
112 |
+
H2, W2 = collage.shape[0], collage.shape[1]
|
113 |
+
cropped_target_image = cv2.resize(cropped_target_image, (512,512)).astype(np.float32)
|
114 |
+
collage = cv2.resize(collage, (512,512)).astype(np.float32)
|
115 |
+
collage_mask = (cv2.resize(collage_mask, (512,512)).astype(np.float32) > 0.5).astype(np.float32)
|
116 |
+
|
117 |
+
masked_ref_image_aug = masked_ref_image_aug / 255
|
118 |
+
cropped_target_image = cropped_target_image / 127.5 - 1.0
|
119 |
+
collage = collage / 127.5 - 1.0
|
120 |
+
collage = np.concatenate([collage, collage_mask[:,:,:1] ] , -1)
|
121 |
+
|
122 |
+
item = dict(ref=masked_ref_image_aug.copy(), jpg=cropped_target_image.copy(), hint=collage.copy(), extra_sizes=np.array([H1, W1, H2, W2]), tar_box_yyxx_crop=np.array( tar_box_yyxx_crop ) )
|
123 |
+
return item
|
124 |
+
|
125 |
+
|
126 |
+
def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop):
|
127 |
+
H1, W1, H2, W2 = extra_sizes
|
128 |
+
y1,y2,x1,x2 = tar_box_yyxx_crop
|
129 |
+
pred = cv2.resize(pred, (W2, H2))
|
130 |
+
m = 5 # maigin_pixel
|
131 |
+
|
132 |
+
if W1 == H1:
|
133 |
+
tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
|
134 |
+
return tar_image
|
135 |
+
|
136 |
+
if W1 < W2:
|
137 |
+
pad1 = int((W2 - W1) / 2)
|
138 |
+
pad2 = W2 - W1 - pad1
|
139 |
+
pred = pred[:,pad1: -pad2, :]
|
140 |
+
else:
|
141 |
+
pad1 = int((H2 - H1) / 2)
|
142 |
+
pad2 = H2 - H1 - pad1
|
143 |
+
pred = pred[pad1: -pad2, :, :]
|
144 |
+
|
145 |
+
gen_image = tar_image.copy()
|
146 |
+
gen_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
|
147 |
+
return gen_image
|
148 |
+
|
149 |
+
|
150 |
+
def inference_single_image(ref_image, ref_mask, tar_image, tar_mask, guidance_scale = 5.0):
|
151 |
+
item = process_pairs(ref_image, ref_mask, tar_image, tar_mask)
|
152 |
+
ref = item['ref'] * 255
|
153 |
+
tar = item['jpg'] * 127.5 + 127.5
|
154 |
+
hint = item['hint'] * 127.5 + 127.5
|
155 |
+
|
156 |
+
hint_image = hint[:,:,:-1]
|
157 |
+
hint_mask = item['hint'][:,:,-1] * 255
|
158 |
+
hint_mask = np.stack([hint_mask,hint_mask,hint_mask],-1)
|
159 |
+
ref = cv2.resize(ref.astype(np.uint8), (512,512))
|
160 |
+
|
161 |
+
seed = random.randint(0, 65535)
|
162 |
+
if save_memory:
|
163 |
+
model.low_vram_shift(is_diffusing=False)
|
164 |
+
|
165 |
+
ref = item['ref']
|
166 |
+
tar = item['jpg']
|
167 |
+
hint = item['hint']
|
168 |
+
num_samples = 1
|
169 |
+
|
170 |
+
control = torch.from_numpy(hint.copy()).float().cuda()
|
171 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
172 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
173 |
+
|
174 |
+
|
175 |
+
clip_input = torch.from_numpy(ref.copy()).float().cuda()
|
176 |
+
clip_input = torch.stack([clip_input for _ in range(num_samples)], dim=0)
|
177 |
+
clip_input = einops.rearrange(clip_input, 'b h w c -> b c h w').clone()
|
178 |
+
|
179 |
+
guess_mode = False
|
180 |
+
H,W = 512,512
|
181 |
+
|
182 |
+
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning( clip_input )]}
|
183 |
+
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([torch.zeros((1,3,224,224))] * num_samples)]}
|
184 |
+
shape = (4, H // 8, W // 8)
|
185 |
+
|
186 |
+
if save_memory:
|
187 |
+
model.low_vram_shift(is_diffusing=True)
|
188 |
+
|
189 |
+
# ====
|
190 |
+
num_samples = 1 #gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
191 |
+
image_resolution = 512 #gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
|
192 |
+
strength = 1 #gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
193 |
+
guess_mode = False #gr.Checkbox(label='Guess Mode', value=False)
|
194 |
+
#detect_resolution = 512 #gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024, value=512, step=1)
|
195 |
+
ddim_steps = 50 #gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
196 |
+
scale = guidance_scale #gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
197 |
+
seed = -1 #gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
198 |
+
eta = 0.0 #gr.Number(label="eta (DDIM)", value=0.0)
|
199 |
+
|
200 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
201 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
202 |
+
shape, cond, verbose=False, eta=eta,
|
203 |
+
unconditional_guidance_scale=scale,
|
204 |
+
unconditional_conditioning=un_cond)
|
205 |
+
if save_memory:
|
206 |
+
model.low_vram_shift(is_diffusing=False)
|
207 |
+
|
208 |
+
x_samples = model.decode_first_stage(samples)
|
209 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy()#.clip(0, 255).astype(np.uint8)
|
210 |
+
|
211 |
+
result = x_samples[0][:,:,::-1]
|
212 |
+
result = np.clip(result,0,255)
|
213 |
+
|
214 |
+
pred = x_samples[0]
|
215 |
+
pred = np.clip(pred,0,255)[1:,:,:]
|
216 |
+
sizes = item['extra_sizes']
|
217 |
+
tar_box_yyxx_crop = item['tar_box_yyxx_crop']
|
218 |
+
gen_image = crop_back(pred, tar_image, sizes, tar_box_yyxx_crop)
|
219 |
+
return gen_image
|
220 |
+
|
221 |
+
|
222 |
+
if __name__ == '__main__':
|
223 |
+
|
224 |
+
import os
|
225 |
+
import cv2
|
226 |
+
import itertools
|
227 |
+
|
228 |
+
# Assuming 'inference_single_image' function is defined elsewhere
|
229 |
+
|
230 |
+
save_dir = '/work/pink_girl/out'
|
231 |
+
cloth_dir = '/work/pink_girl/cloth/top'
|
232 |
+
cloth_mask_dir = '/work/pink_girl/cloth-mask'
|
233 |
+
image_dir = '/work/pink_girl/image'
|
234 |
+
image_parse_v3_dir = '/work/pink_girl/image-mask'
|
235 |
+
|
236 |
+
# Fixed reference image and its mask
|
237 |
+
fixed_ref_image_name = 'we_picked_8.jpg'
|
238 |
+
fixed_ref_image_path = os.path.join(image_dir, fixed_ref_image_name)
|
239 |
+
fixed_ref_mask_path = os.path.join(image_parse_v3_dir, 'top_long_collar.png')
|
240 |
+
|
241 |
+
# Ensure the save directory exists
|
242 |
+
if not os.path.exists(save_dir):
|
243 |
+
os.makedirs(save_dir)
|
244 |
+
|
245 |
+
# Create list of cloth image names
|
246 |
+
cloth_image_names = os.listdir(cloth_dir)
|
247 |
+
|
248 |
+
for cloth_image_name in cloth_image_names:
|
249 |
+
# Construct paths for cloth and its mask
|
250 |
+
cloth_image_path = os.path.join(cloth_dir, cloth_image_name)
|
251 |
+
cloth_mask_path = os.path.join(cloth_mask_dir, cloth_image_name)
|
252 |
+
|
253 |
+
# Load and process the cloth image and mask
|
254 |
+
cloth_image = cv2.imread(cloth_image_path)
|
255 |
+
cloth_image = cv2.cvtColor(cloth_image, cv2.COLOR_BGR2RGB)
|
256 |
+
cloth_mask = (cv2.imread(cloth_mask_path) > 128).astype(np.uint8)[:, :, 0]
|
257 |
+
|
258 |
+
# Load and process the fixed reference image and mask
|
259 |
+
ref_image = cv2.imread(fixed_ref_image_path)
|
260 |
+
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB)
|
261 |
+
ref_mask = Image.open(fixed_ref_mask_path).convert('P')
|
262 |
+
ref_mask = np.array(ref_mask) == 5 # Update this value if the mask classification is different
|
263 |
+
|
264 |
+
# Generate the image using the provided function
|
265 |
+
gen_image = inference_single_image(cloth_image, cloth_mask, ref_image, ref_mask)
|
266 |
+
gen_path = os.path.join(save_dir, '5_' + cloth_image_name)
|
267 |
+
|
268 |
+
# Concatenate and save the visualization
|
269 |
+
vis_image = cv2.hconcat([cloth_image, ref_image, gen_image])
|
270 |
+
cv2.imwrite(gen_path, cv2.cvtColor(vis_image, cv2.COLOR_RGB2BGR))
|