- INFERRED_TRAINED/40000305_0839.jpg +0 -0
- INFERRED_TRAINED/40015705_0900.jpg +0 -0
- INFERRED_TRAINED/40015804_0799.jpg +0 -0
- INFERRED_TRAINED/40015903_0416.jpg +0 -0
- INFERRED_TRAINED/40016009_0888.jpg +0 -0
- INFERRED_TRAINED/40016108_0104.jpg +0 -0
- INFERRED_TRAINED/40016108_0691.jpg +0 -0
- INFERRED_TRAINED/40071282_0900.jpg +0 -0
- INFERRED_TRAINED/40071367_0430.jpg +0 -0
- INFERRED_TRAINED/40071367_0888.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/40000305_0839.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/40015705_0900.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/40015804_0799.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/40015903_0416.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/40016009_0888.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/40016108_0104.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/40016108_0691.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/40071282_0900.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/40071367_0430.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/43952724_0060.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_40000305_0839.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_40015705_0900.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_40015804_0799.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_40015903_0416.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_40016009_0888.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_40016108_0104.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_40016108_0691.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_40071282_0900.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_40071367_0430.jpg +0 -0
- INFERRED_TRAINED_SHUFFLED/_t_43952724_0060.jpg +0 -0
- anydoor/configs/inference.yaml +1 -1
- anydoor/run_inference.py +0 -2
- anydoor/run_inference_train.py +0 -2
INFERRED_TRAINED/40000305_0839.jpg
CHANGED
INFERRED_TRAINED/40015705_0900.jpg
CHANGED
INFERRED_TRAINED/40015804_0799.jpg
CHANGED
INFERRED_TRAINED/40015903_0416.jpg
CHANGED
INFERRED_TRAINED/40016009_0888.jpg
CHANGED
INFERRED_TRAINED/40016108_0104.jpg
CHANGED
INFERRED_TRAINED/40016108_0691.jpg
CHANGED
INFERRED_TRAINED/40071282_0900.jpg
CHANGED
INFERRED_TRAINED/40071367_0430.jpg
CHANGED
INFERRED_TRAINED/40071367_0888.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/40000305_0839.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/40015705_0900.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/40015804_0799.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/40015903_0416.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/40016009_0888.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/40016108_0104.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/40016108_0691.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/40071282_0900.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/40071367_0430.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/43952724_0060.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_40000305_0839.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_40015705_0900.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_40015804_0799.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_40015903_0416.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_40016009_0888.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_40016108_0104.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_40016108_0691.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_40071282_0900.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_40071367_0430.jpg
CHANGED
INFERRED_TRAINED_SHUFFLED/_t_43952724_0060.jpg
CHANGED
anydoor/configs/inference.yaml
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
pretrained_model: /work/wefa-door-master/
|
2 |
config_file: configs/anydoor.yaml
|
3 |
save_memory: False
|
|
|
1 |
+
pretrained_model: /work/wefa-door-master/adbase-step=44375.ckpt
|
2 |
config_file: configs/anydoor.yaml
|
3 |
save_memory: False
|
anydoor/run_inference.py
CHANGED
@@ -30,8 +30,6 @@ model.load_state_dict(load_state_dict(model_ckpt, location='cuda'))
|
|
30 |
model = model.cuda()
|
31 |
ddim_sampler = DDIMSampler(model)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
def aug_data_mask(image, mask):
|
36 |
transform = A.Compose([
|
37 |
A.HorizontalFlip(p=0.5),
|
|
|
30 |
model = model.cuda()
|
31 |
ddim_sampler = DDIMSampler(model)
|
32 |
|
|
|
|
|
33 |
def aug_data_mask(image, mask):
|
34 |
transform = A.Compose([
|
35 |
A.HorizontalFlip(p=0.5),
|
anydoor/run_inference_train.py
CHANGED
@@ -30,8 +30,6 @@ model.load_state_dict(load_state_dict(model_ckpt, location='cuda'))
|
|
30 |
model = model.cuda()
|
31 |
ddim_sampler = DDIMSampler(model)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
def aug_data_mask(image, mask):
|
36 |
transform = A.Compose([
|
37 |
A.HorizontalFlip(p=0.5),
|
|
|
30 |
model = model.cuda()
|
31 |
ddim_sampler = DDIMSampler(model)
|
32 |
|
|
|
|
|
33 |
def aug_data_mask(image, mask):
|
34 |
transform = A.Compose([
|
35 |
A.HorizontalFlip(p=0.5),
|