# Prediction interface for Cog ⚙️ # https://github.com/replicate/cog/blob/main/docs/python.md from cog import BasePredictor, Input, Path import os import cv2 import time import torch import einops import random import subprocess import numpy as np from cldm.ddim_hacked import DDIMSampler from cldm.model import create_model, load_state_dict from cldm.hack import disable_verbosity from datasets.data_utils import * from omegaconf import OmegaConf save_memory = False MODEL_URL = "https://weights.replicate.delivery/default/ali-vilab/anydoor.tar" MODEL_CACHE="checkpoints" def download(url, dest): start = time.time() print("downloading url: ", url) print("downloading to: ", dest) subprocess.check_call(["pget", "-x", url, dest], close_fds=False) print("downloading took: ", time.time() - start) def process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 0.8, enable_shape_control = False): # ========= Reference =========== # ref expand ref_box_yyxx = get_bbox_from_mask(ref_mask) # ref filter mask ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3) y1,y2,x1,x2 = ref_box_yyxx masked_ref_image = masked_ref_image[y1:y2,x1:x2,:] ref_mask = ref_mask[y1:y2,x1:x2] ratio = np.random.randint(11, 15) / 10 #11,13 masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) # to square and resize masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False) masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), (224,224) ).astype(np.uint8) ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False) ref_mask_3 = cv2.resize(ref_mask_3.astype(np.uint8), (224,224) ).astype(np.uint8) ref_mask = ref_mask_3[:,:,0] # collage aug masked_ref_image_compose, ref_mask_compose = masked_ref_image, ref_mask ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1) ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255) # ========= Target =========== tar_box_yyxx = get_bbox_from_mask(tar_mask) tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2]) #1.1 1.3 tar_box_yyxx_full = tar_box_yyxx # crop tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=[1.3, 3.0]) tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box y1,y2,x1,x2 = tar_box_yyxx_crop cropped_target_image = tar_image[y1:y2,x1:x2,:] cropped_tar_mask = tar_mask[y1:y2,x1:x2] tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop) y1,y2,x1,x2 = tar_box_yyxx # collage ref_image_collage = cv2.resize(ref_image_collage.astype(np.uint8), (x2-x1, y2-y1)) ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1)) ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8) collage = cropped_target_image.copy() collage[y1:y2,x1:x2,:] = ref_image_collage collage_mask = cropped_target_image.copy() * 0.0 collage_mask[y1:y2,x1:x2,:] = 1.0 if enable_shape_control: collage_mask = np.stack([cropped_tar_mask,cropped_tar_mask,cropped_tar_mask],-1) # the size before pad H1, W1 = collage.shape[0], collage.shape[1] cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8) collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8) collage_mask = pad_to_square(collage_mask, pad_value = 2, random = False).astype(np.uint8) # the size after pad H2, W2 = collage.shape[0], collage.shape[1] cropped_target_image = cv2.resize(cropped_target_image.astype(np.uint8), (512,512)).astype(np.float32) collage = cv2.resize(collage.astype(np.uint8), (512,512)).astype(np.float32) collage_mask = cv2.resize(collage_mask.astype(np.uint8), (512,512), interpolation = cv2.INTER_NEAREST).astype(np.float32) collage_mask[collage_mask == 2] = -1 masked_ref_image = masked_ref_image / 255 cropped_target_image = cropped_target_image / 127.5 - 1.0 collage = collage / 127.5 - 1.0 collage = np.concatenate([collage, collage_mask[:,:,:1] ] , -1) item = dict(ref=masked_ref_image.copy(), jpg=cropped_target_image.copy(), hint=collage.copy(), extra_sizes=np.array([H1, W1, H2, W2]), tar_box_yyxx_crop=np.array( tar_box_yyxx_crop ), tar_box_yyxx=np.array(tar_box_yyxx_full), ) return item def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop): H1, W1, H2, W2 = extra_sizes y1,y2,x1,x2 = tar_box_yyxx_crop pred = cv2.resize(pred, (W2, H2)) m = 5 # maigin_pixel if W1 == H1: tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m] return tar_image if W1 < W2: pad1 = int((W2 - W1) / 2) pad2 = W2 - W1 - pad1 pred = pred[:,pad1: -pad2, :] else: pad1 = int((H2 - H1) / 2) pad2 = H2 - H1 - pad1 pred = pred[pad1: -pad2, :, :] gen_image = tar_image.copy() gen_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m] return gen_image class Predictor(BasePredictor): def setup(self) -> None: """Load the model into memory to make running multiple predictions efficient""" # if checkpoints folder does not exist, create it if not os.path.exists(MODEL_CACHE): download(MODEL_URL, MODEL_CACHE) disable_verbosity() cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) config = OmegaConf.load('./configs/inference.yaml') model_ckpt = config.pretrained_model model_config = config.config_file model = create_model(model_config).cpu() model.load_state_dict(load_state_dict(model_ckpt, location='cuda')) self.model = model.cuda() self.ddim_sampler = DDIMSampler(model) def inference_single_image(self, ref_image, ref_mask, tar_image, tar_mask, strength, ddim_steps, guidance_scale, seed, enable_shape_control): item = process_pairs(ref_image, ref_mask, tar_image, tar_mask, enable_shape_control) ref = item['ref'] * 255 tar = item['jpg'] * 127.5 + 127.5 hint = item['hint'] * 127.5 + 127.5 hint_image = hint[:,:,:-1] hint_mask = item['hint'][:,:,-1] * 255 hint_mask = np.stack([hint_mask,hint_mask,hint_mask],-1) ref = cv2.resize(ref.astype(np.uint8), (512,512)) seed = random.randint(0, 65535) if save_memory: self.model.low_vram_shift(is_diffusing=False) ref = item['ref'] tar = item['jpg'] hint = item['hint'] num_samples = 1 control = torch.from_numpy(hint.copy()).float().cuda() control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() clip_input = torch.from_numpy(ref.copy()).float().cuda() clip_input = torch.stack([clip_input for _ in range(num_samples)], dim=0) clip_input = einops.rearrange(clip_input, 'b h w c -> b c h w').clone() guess_mode = False H,W = 512,512 cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning( clip_input )]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([torch.zeros((1,3,224,224))] * num_samples)]} shape = (4, H // 8, W // 8) if save_memory: self.model.low_vram_shift(is_diffusing=True) # ==== num_samples = 1 #gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = 512 #gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) #strength = 1 #gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) guess_mode = False #gr.Checkbox(label='Guess Mode', value=False) #detect_resolution = 512 #gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024, value=512, step=1) #ddim_steps = 50 #gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) scale = guidance_scale #gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) #seed = -1 #gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) eta = 0.0 #gr.Number(label="eta (DDIM)", value=0.0) self.model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) samples, intermediates = self.ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy() result = x_samples[0][:,:,::-1] result = np.clip(result,0,255) pred = x_samples[0] pred = np.clip(pred,0,255)[1:,:,:] sizes = item['extra_sizes'] tar_box_yyxx_crop = item['tar_box_yyxx_crop'] gen_image = crop_back(pred, tar_image, sizes, tar_box_yyxx_crop) return gen_image def predict( self, reference_image_path: Path = Input(description="Source Image"), reference_image_mask: Path = Input(description="Source Image"), bg_image_path: Path = Input(description="Target Image"), bg_mask_path: Path = Input(description="Target Image mask"), control_strength: float = Input(description="Control Strength", default=1.0, ge=0.0, le=2.0), steps: int = Input(description="Steps", default=50, ge=1, le=100), guidance_scale: float = Input(description="Guidance Scale", default=4.5, ge=0.1, le=30.0), enable_shape_control: bool = Input(description="Enable Shape Control", default=False), seed: int = Input(description="Random seed. Leave blank to randomize the seed", default=None), ) -> Path: """Run a single prediction on the model""" if seed is None: seed = int.from_bytes(os.urandom(4), "big") print(f"Using seed: {seed}") save_path = "/tmp/output.png" image = cv2.imread(str(reference_image_path), cv2.IMREAD_UNCHANGED) if image.shape[2] == 1: image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) elif image.shape[2] == 4: image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR) ref_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) ref_mask = (cv2.imread(str(reference_image_mask))[:,:,-1] > 128).astype(np.uint8) # background image back_image = cv2.imread(str(bg_image_path)).astype(np.uint8) back_image = cv2.cvtColor(back_image, cv2.COLOR_BGR2RGB) # background mask tar_mask = cv2.imread(str(bg_mask_path))[:,:,0] > 128 tar_mask = tar_mask.astype(np.uint8) gen_image = self.inference_single_image( ref_image,ref_mask, back_image.copy(), tar_mask, control_strength, steps, guidance_scale, seed, enable_shape_control) h,w = back_image.shape[0], back_image.shape[0] ref_image = cv2.resize(ref_image, (w,h)) vis_image = cv2.hconcat([gen_image]) cv2.imwrite(save_path, vis_image [:,:,::-1]) return Path(save_path)