import cv2 import einops import numpy as np import torch import random import gradio as gr import os import albumentations as A from PIL import Image import torchvision.transforms as T from datasets.data_utils import * from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler from omegaconf import OmegaConf from cldm.hack import disable_verbosity, enable_sliced_attention cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) save_memory = False disable_verbosity() if save_memory: enable_sliced_attention() config = OmegaConf.load('./configs/demo.yaml') model_ckpt = config.pretrained_model model_config = config.config_file use_interactive_seg = config.config_file model = create_model(model_config ).cpu() model.load_state_dict(load_state_dict(model_ckpt, location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) if use_interactive_seg: from iseg.coarse_mask_refine_util import BaselineModel model_path = './iseg/coarse_mask_refine.pth' iseg_model = BaselineModel().eval() weights = torch.load(model_path , map_location='cpu')['state_dict'] iseg_model.load_state_dict(weights, strict= True) def process_image_mask(image_np, mask_np): img = torch.from_numpy(image_np.transpose((2, 0, 1))) img = img.float().div(255).unsqueeze(0) mask = torch.from_numpy(mask_np).float().unsqueeze(0).unsqueeze(0) pred = iseg_model(img, mask)['instances'][0,0].detach().numpy() > 0.5 return pred.astype(np.uint8) def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop): H1, W1, H2, W2 = extra_sizes y1,y2,x1,x2 = tar_box_yyxx_crop pred = cv2.resize(pred, (W2, H2)) m = 3 # maigin_pixel if W1 == H1: tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m] return tar_image if W1 < W2: pad1 = int((W2 - W1) / 2) pad2 = W2 - W1 - pad1 pred = pred[:,pad1: -pad2, :] else: pad1 = int((H2 - H1) / 2) pad2 = H2 - H1 - pad1 pred = pred[pad1: -pad2, :, :] tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m] return tar_image def inference_single_image(ref_image, ref_mask, tar_image, tar_mask, strength, ddim_steps, scale, seed, enable_shape_control, ): raw_background = tar_image.copy() item = process_pairs(ref_image, ref_mask, tar_image, tar_mask, enable_shape_control = enable_shape_control) ref = item['ref'] hint = item['hint'] num_samples = 1 control = torch.from_numpy(hint.copy()).float().cuda() control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() clip_input = torch.from_numpy(ref.copy()).float().cuda() clip_input = torch.stack([clip_input for _ in range(num_samples)], dim=0) clip_input = einops.rearrange(clip_input, 'b h w c -> b c h w').clone() H,W = 512,512 cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning( clip_input )]} un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([torch.zeros((1,3,224,224))] * num_samples)]} shape = (4, H // 8, W // 8) if save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = ([strength] * 13) samples, _ = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=0, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy() result = x_samples[0][:,:,::-1] result = np.clip(result,0,255) pred = x_samples[0] pred = np.clip(pred,0,255)[1:,:,:] sizes = item['extra_sizes'] tar_box_yyxx_crop = item['tar_box_yyxx_crop'] tar_image = crop_back(pred, tar_image, sizes, tar_box_yyxx_crop) # keep background unchanged y1,y2,x1,x2 = item['tar_box_yyxx'] raw_background[y1:y2, x1:x2, :] = tar_image[y1:y2, x1:x2, :] return raw_background def process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 0.8, enable_shape_control = False): # ========= Reference =========== # ref expand ref_box_yyxx = get_bbox_from_mask(ref_mask) # ref filter mask ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3) y1,y2,x1,x2 = ref_box_yyxx masked_ref_image = masked_ref_image[y1:y2,x1:x2,:] ref_mask = ref_mask[y1:y2,x1:x2] ratio = np.random.randint(11, 15) / 10 #11,13 masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) # to square and resize masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False) masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), (224,224) ).astype(np.uint8) ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False) ref_mask_3 = cv2.resize(ref_mask_3.astype(np.uint8), (224,224) ).astype(np.uint8) ref_mask = ref_mask_3[:,:,0] # collage aug masked_ref_image_compose, ref_mask_compose = masked_ref_image, ref_mask ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1) ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255) # ========= Target =========== tar_box_yyxx = get_bbox_from_mask(tar_mask) tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2]) #1.1 1.3 tar_box_yyxx_full = tar_box_yyxx # crop tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=[1.3, 3.0]) tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box y1,y2,x1,x2 = tar_box_yyxx_crop cropped_target_image = tar_image[y1:y2,x1:x2,:] cropped_tar_mask = tar_mask[y1:y2,x1:x2] tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop) y1,y2,x1,x2 = tar_box_yyxx # collage ref_image_collage = cv2.resize(ref_image_collage.astype(np.uint8), (x2-x1, y2-y1)) ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1)) ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8) collage = cropped_target_image.copy() collage[y1:y2,x1:x2,:] = ref_image_collage collage_mask = cropped_target_image.copy() * 0.0 collage_mask[y1:y2,x1:x2,:] = 1.0 if enable_shape_control: collage_mask = np.stack([cropped_tar_mask,cropped_tar_mask,cropped_tar_mask],-1) # the size before pad H1, W1 = collage.shape[0], collage.shape[1] cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8) collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8) collage_mask = pad_to_square(collage_mask, pad_value = 2, random = False).astype(np.uint8) # the size after pad H2, W2 = collage.shape[0], collage.shape[1] cropped_target_image = cv2.resize(cropped_target_image.astype(np.uint8), (512,512)).astype(np.float32) collage = cv2.resize(collage.astype(np.uint8), (512,512)).astype(np.float32) collage_mask = cv2.resize(collage_mask.astype(np.uint8), (512,512), interpolation = cv2.INTER_NEAREST).astype(np.float32) collage_mask[collage_mask == 2] = -1 masked_ref_image = masked_ref_image / 255 cropped_target_image = cropped_target_image / 127.5 - 1.0 collage = collage / 127.5 - 1.0 collage = np.concatenate([collage, collage_mask[:,:,:1] ] , -1) item = dict(ref=masked_ref_image.copy(), jpg=cropped_target_image.copy(), hint=collage.copy(), extra_sizes=np.array([H1, W1, H2, W2]), tar_box_yyxx_crop=np.array( tar_box_yyxx_crop ), tar_box_yyxx=np.array(tar_box_yyxx_full), ) return item ref_dir='./examples/Gradio/FG' image_dir='./examples/Gradio/BG' ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] ref_list.sort() image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] image_list.sort() def mask_image(image, mask): blanc = np.ones_like(image) * 255 mask = np.stack([mask,mask,mask],-1) / 255 masked_image = mask * ( 0.5 * blanc + 0.5 * image) + (1-mask) * image return masked_image.astype(np.uint8) def run_local(base, ref, *args): image = base["image"].convert("RGB") mask = base["mask"].convert("L") ref_image = ref["image"].convert("RGB") ref_mask = ref["mask"].convert("L") image = np.asarray(image) mask = np.asarray(mask) mask = np.where(mask > 128, 1, 0).astype(np.uint8) ref_image = np.asarray(ref_image) ref_mask = np.asarray(ref_mask) ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8) if ref_mask.sum() == 0: raise gr.Error('No mask for the reference image.') if mask.sum() == 0: raise gr.Error('No mask for the background image.') if reference_mask_refine: ref_mask = process_image_mask(ref_image, ref_mask) synthesis = inference_single_image(ref_image.copy(), ref_mask.copy(), image.copy(), mask.copy(), *args) synthesis = torch.from_numpy(synthesis).permute(2, 0, 1) synthesis = synthesis.permute(1, 2, 0).numpy() return [synthesis] with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# Play with AnyDoor to Teleport your Target Objects! ") with gr.Row(): baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768) with gr.Accordion("Advanced Option", open=True): num_samples = 1 strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=4.5, step=0.1) seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=-1) reference_mask_refine = gr.Checkbox(label='Reference Mask Refine', value=False, interactive = True) enable_shape_control = gr.Checkbox(label='Enable Shape Control', value=False, interactive = True) gr.Markdown("### Guidelines") gr.Markdown(" Higher guidance-scale makes higher fidelity, while lower one makes more harmonized blending.") gr.Markdown(" Users should annotate the mask of the target object, too coarse mask would lead to bad generation.\ Reference Mask Refine provides a segmentation model to refine the coarse mask. ") gr.Markdown(" Enable shape control means the generation results would consider user-drawn masks to control the shape & pose; otherwise it \ considers the location and size to adjust automatically.") gr.Markdown("# Upload / Select Images for the Background (left) and Reference Object (right)") gr.Markdown("### You could draw coarse masks on the background to indicate the desired location and shape.") gr.Markdown("### Do not forget to annotate the target object on the reference image.") with gr.Row(): base = gr.Image(label="Background", source="upload", tool="sketch", type="pil", height=512, brush_color='#FFFFFF', mask_opacity=0.5) ref = gr.Image(label="Reference", source="upload", tool="sketch", type="pil", height=512, brush_color='#FFFFFF', mask_opacity=0.5) run_local_button = gr.Button(label="Generate", value="Run") with gr.Row(): with gr.Column(): gr.Examples(image_list, inputs=[base],label="Examples - Background Image",examples_per_page=16) with gr.Column(): gr.Examples(ref_list, inputs=[ref],label="Examples - Reference Object",examples_per_page=16) run_local_button.click(fn=run_local, inputs=[base, ref, strength, ddim_steps, scale, seed, enable_shape_control, ], outputs=[baseline_gallery] ) demo.launch(server_name="0.0.0.0")