File size: 3,279 Bytes
123b709 387989b 97f7b96 8a46630 97f7b96 387989b 97f7b96 2a53f07 8a46630 97f7b96 8a46630 97f7b96 d80d276 17bf5d3 7b248b3 123b709 8a46630 088d917 8a46630 088d917 6f10f0f 31c3d9d 088d917 6f10f0f 0082f29 6f10f0f 088d917 facf1bc 088d917 facf1bc 088d917 8a46630 d80d276 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
license: mit
language:
- ja
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
- bert
- zero-shot-classification
- text-classification
datasets:
- MoritzLaurer/multilingual-NLI-26lang-2mil7
- shunk031/JGLUE
metrics:
- accuracy
- f1
model-index:
- name: mDeBERTa-v3-base-finetuned-nli-jnli
results: []
pipeline_tag: zero-shot-classification
widget:
- text: 今日の予定を教えて
candidate_labels: 天気,ニュース,金融,予定
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mDeBERTa-v3-base-finetuned-nli-jnli
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7739
- Accuracy: 0.6808
- F1: 0.6742
## Model description
More information needed
## Intended uses & limitations
#### zero-shot classification
```python
from transformers import pipeline
model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli"
classifier = pipeline("zero-shot-classification", model=model_name)
text = ["今日の天気を教えて", "ニュースある?", "予定をチェックして", "ドル円は?"]
labels = ["天気", "ニュース", "金融", "予定"]
for t in text:
output = classifier(t, labels, multi_label=False)
print(output)
```
#### NLI use-case
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
premise = "NY Yankees is the professional baseball team in America."
hypothesis = "メジャーリーグのチームは、日本ではニューヨークヤンキースが有名だ。"
inputs = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
preds = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
result = {name: round(float(pred) * 100, 1) for pred, name in zip(preds, label_names)}
print(result)
```
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.753 | 0.53 | 5000 | 0.8758 | 0.6105 | 0.6192 |
| 0.5947 | 1.07 | 10000 | 0.6619 | 0.7054 | 0.7035 |
| 0.5791 | 1.6 | 15000 | 0.7739 | 0.6808 | 0.6742 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3 |