thomas0104 commited on
Commit
39d6646
·
1 Parent(s): 47a6eba

Upload whisper_nan_demo_gradio.py

Browse files
Files changed (1) hide show
  1. whisper_nan_demo_gradio.py +83 -0
whisper_nan_demo_gradio.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ import gradio as gr
4
+ import pytube as pt
5
+ from transformers import pipeline
6
+ from huggingface_hub import model_info
7
+
8
+ MODEL_NAME = "thomas0104/whisper-large-v2-nan-tw-only-char" #this always needs to stay in line 8 :D sorry for the hackiness
9
+ lang = "chinese"
10
+
11
+ device = 0 if torch.cuda.is_available() else "cpu"
12
+ pipe = pipeline(
13
+ task="automatic-speech-recognition",
14
+ model=MODEL_NAME,
15
+ chunk_length_s=30,
16
+ device=device,
17
+ )
18
+
19
+ pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
20
+
21
+ def transcribe(microphone, file_upload):
22
+ warn_output = ""
23
+ if (microphone is not None) and (file_upload is not None):
24
+ warn_output = (
25
+ "WARNING: You've uploaded an audio file and used the microphone. "
26
+ "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
27
+ )
28
+
29
+ elif (microphone is None) and (file_upload is None):
30
+ return "ERROR: You have to either use the microphone or upload an audio file"
31
+
32
+ file = microphone if microphone is not None else file_upload
33
+
34
+ text = pipe(file)["text"]
35
+
36
+ return warn_output + text
37
+
38
+
39
+ def _return_yt_html_embed(yt_url):
40
+ video_id = yt_url.split("?v=")[-1]
41
+ HTML_str = (
42
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
43
+ " </center>"
44
+ )
45
+ return HTML_str
46
+
47
+
48
+ def yt_transcribe(yt_url):
49
+ yt = pt.YouTube(yt_url)
50
+ html_embed_str = _return_yt_html_embed(yt_url)
51
+ stream = yt.streams.filter(only_audio=True)[0]
52
+ stream.download(filename="audio.mp3")
53
+
54
+ text = pipe("audio.mp3")["text"]
55
+
56
+ return html_embed_str, text
57
+
58
+
59
+ demo = gr.Blocks()
60
+
61
+ mf_transcribe = gr.Interface(
62
+ fn=transcribe,
63
+ inputs=[
64
+ gr.inputs.Audio(source="microphone", type="filepath", optional=True),
65
+ gr.inputs.Audio(source="upload", type="filepath", optional=True),
66
+ ],
67
+ outputs="text",
68
+ layout="horizontal",
69
+ theme="huggingface",
70
+ title="Whisper Demo: Transcribe Audio",
71
+ description=(
72
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
73
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
74
+ " of arbitrary length."
75
+ ),
76
+ allow_flagging="never",
77
+ )
78
+
79
+
80
+ with demo:
81
+ gr.TabbedInterface([mf_transcribe], ["Transcribe Audio"])
82
+
83
+ demo.launch(enable_queue=True,share=True)