--- language: - zh license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper large-v2 nan-tw only char results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 nan-tw type: mozilla-foundation/common_voice_11_0 config: nan-tw split: test args: nan-tw metrics: - name: Wer type: wer value: 45.37404580152672 --- # Whisper large-v2 nan-tw only char This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 nan-tw dataset. It achieves the following results on the evaluation set: - Loss: 1.0351 - Wer: 45.3740 - Cer: 45.4573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.6011 | 1.04 | 1000 | 1.1100 | 55.0229 | 55.2068 | | 0.1773 | 2.08 | 2000 | 1.2055 | 58.6565 | 58.7685 | | 0.015 | 3.13 | 3000 | 1.0932 | 48.6412 | 48.8077 | | 0.0131 | 5.01 | 4000 | 1.0531 | 45.7099 | 45.8497 | | 0.0001 | 6.05 | 5000 | 1.0351 | 45.3740 | 45.4573 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2