--- license: apache-2.0 tags: - mixtral - dense - mistral - expert --- # Unmixtraled 22B expert 1 > [!WARNING] > This model outputs gibberish as it was not trained under the dense configuration. Finetuning or merging is needed to make this model useful. This is a 22B Mistral model recycling weights from [mistral-community/Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1). The model was adapted from a Mixtral architecture to a dense Mistral architecture with the same number of layers, attention heads and hidden dimensions. Embeddings, attention, layer norms and LM head weights were taken directly from the 8x22B model, all MLP weights were taken from expert 1. The following named weight correspondance was used: | Mistral weight | Mixtral weight | |----------------|----------------------------------| | `gate_proj` | `experts.1.w1` | | `down_proj` | `experts.1.w2` | | `up_proj` | `experts.1.w3` | ## Unmixtraled models | Expert | Source | Wikitext perplexity | |--------|-----------------|---------------------| | [Unmixtraled-22B-v0.1-expert-0](https://huggingface.co/thomasgauthier/Unmixtraled-22B-v0.1-expert-0) | Mixtral 8x22B embed, attn, layernorm, lm_head + expert 0 MLPs | 696.6932983398438 | | [**Unmixtraled-22B-v0.1-expert-1**](https://huggingface.co/thomasgauthier/Unmixtraled-22B-v0.1-expert-1) | **Mixtral 8x22B embed, attn, layernorm, lm_head + expert 1 MLPs** | **6853.04248046875** | | [Unmixtraled-22B-v0.1-expert-2](https://huggingface.co/thomasgauthier/Unmixtraled-22B-v0.1-expert-2) | Mixtral 8x22B embed, attn, layernorm, lm_head + expert 2 MLPs | 4689.181640625 | | [Unmixtraled-22B-v0.1-expert-3](https://huggingface.co/thomasgauthier/Unmixtraled-22B-v0.1-expert-3) | Mixtral 8x22B embed, attn, layernorm, lm_head + expert 3 MLPs | 782.3755493164062 | | [Unmixtraled-22B-v0.1-expert-4](https://huggingface.co/thomasgauthier/Unmixtraled-22B-v0.1-expert-4) | Mixtral 8x22B embed, attn, layernorm, lm_head + expert 4 MLPs | 2844.943603515625 | | [Unmixtraled-22B-v0.1-expert-5](https://huggingface.co/thomasgauthier/Unmixtraled-22B-v0.1-expert-5) | Mixtral 8x22B embed, attn, layernorm, lm_head + expert 5 MLPs | 1099.32373046875 | | [Unmixtraled-22B-v0.1-expert-6](https://huggingface.co/thomasgauthier/Unmixtraled-22B-v0.1-expert-6) | Mixtral 8x22B embed, attn, layernorm, lm_head + expert 6 MLPs | 341.5309753417969 | | [Unmixtraled-22B-v0.1-expert-7](https://huggingface.co/thomasgauthier/Unmixtraled-22B-v0.1-expert-7) | Mixtral 8x22B embed, attn, layernorm, lm_head + expert 7 MLPs | 2099.63818359375 | | [Unmixtraled-22B-v0.1-lerp](https://huggingface.co/thomasgauthier/Unmixtraled-22B-v0.1-lerp) | Mixtral 8x22B embed, attn, layernorm, lm_head + linear merge of expert 0-7 MLPs | 1873.9874267578125 | # Code The following code was used to extract the experts and construct the dense models: ```python # pip install -U transformers huggingface_hub "git+https://github.com/arcee-ai/mergekit@7467108c05d56ef2bb4b8f33936d437dc448f7dd" import fnmatch import json import os import re import shutil import torch from huggingface_hub import snapshot_download from mergekit.architecture import get_architecture_info from mergekit.common import ModelReference from mergekit.io import LazyTensorLoader, TensorWriter from tqdm import tqdm MIXTRAL_MODEL_ID = "mistral-community/Mixtral-8x22B-v0.1" MIXTRAL_PATH = snapshot_download(repo_id=MIXTRAL_MODEL_ID) print(f"Mixtral downloaded to: {MIXTRAL_PATH}") MISTRAL_PATH = snapshot_download( repo_id="mistralai/Mistral-7B-v0.1", allow_patterns=["config.json"] ) print(f"Mistral config downloaded to: {MISTRAL_PATH}") with open(os.path.join(MISTRAL_PATH, "config.json"), "r") as f: mistral_config = json.load(f) with open(os.path.join(MIXTRAL_PATH, "config.json"), "r") as f: mixtral_config = json.load(f) combined_config = { key: mixtral_config[key] for key in mistral_config if key in mixtral_config } combined_config["architectures"] = ["MistralForCausalLM"] combined_config["model_type"] = "mistral" mixtral_model_ref = ModelReference.parse(MIXTRAL_PATH) mixtral_architecture_info = get_architecture_info(mixtral_model_ref.config()) mixtral_loader = LazyTensorLoader(mixtral_model_ref.tensor_index(), lazy_unpickle=True) ALLOW_LIST = ["generation_config.json", "tokenizer.model", "tokenizer_config.json"] def copy_directory(src, dest, allowed_patterns): os.makedirs(dest, exist_ok=True) for root, dirs, files in os.walk(src): # Only keep directories that match at least one of the allowed patterns dirs[:] = [d for d in dirs if any(fnmatch.fnmatch(d, pattern) for pattern in allowed_patterns)] for file in files: # Only copy files that match at least one of the allowed patterns if any(fnmatch.fnmatch(file, pattern) for pattern in allowed_patterns): src_path = os.path.join(root, file) dest_path = os.path.join(dest, os.path.relpath(src_path, src)) os.makedirs(os.path.dirname(dest_path), exist_ok=True) shutil.copy2(src_path, dest_path) def get_tensor(layer_num, expert_num, tensor_type): weight_name = f"model.layers.{layer_num}.block_sparse_moe.experts.{expert_num}.{tensor_type}.weight" return mixtral_loader.get_tensor(weight_name) def extract_layer_number(string): match = re.search(r"layers\.(\d+)\.", string) return int(match.group(1)) if match else None def save_expert_as_dense(output_path, expert_num): dense_model_ref = ModelReference.parse(output_path) dense_architecture_info = get_architecture_info(dense_model_ref.config()) writer = TensorWriter(output_path, safe_serialization=True) for weight_info in tqdm(dense_architecture_info.all_weights(dense_model_ref.config())): if weight_info.name.endswith(".up_proj.weight"): layer_num = extract_layer_number(weight_info.name) writer.save_tensor(weight_info.name, get_tensor(layer_num, expert_num, "w3")) elif weight_info.name.endswith(".down_proj.weight"): layer_num = extract_layer_number(weight_info.name) writer.save_tensor(weight_info.name, get_tensor(layer_num, expert_num, "w2")) elif weight_info.name.endswith(".gate_proj.weight"): layer_num = extract_layer_number(weight_info.name) writer.save_tensor(weight_info.name, get_tensor(layer_num, expert_num, "w1")) else: writer.save_tensor(weight_info.name, mixtral_loader.get_tensor(weight_info.name)) writer.finalize() num_experts = mixtral_config["num_local_experts"] for expert_num in range(num_experts): dense_path = f"./dense_expert_{expert_num}" copy_directory(MIXTRAL_PATH, dense_path, ALLOW_LIST) with open(os.path.join(dense_path, "config.json"), "w") as f: json.dump(combined_config, f, indent=2) save_expert_as_dense(dense_path, expert_num) print(f"Dense model #{expert_num} saved to {os.path.abspath(dense_path)}") ```