--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy - precision - f1 - recall model-index: - name: newsdata-bert results: [] --- # newsdata-bert This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4835 - Accuracy: 0.8617 - Precision: 0.8494 - F1: 0.8533 - Recall: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1 | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.2095 | 0.1024 | 1000 | 1.0182 | 0.7335 | 0.6811 | 0.6915 | 0.7335 | | 0.8995 | 0.2048 | 2000 | 0.8102 | 0.7798 | 0.7622 | 0.7586 | 0.7798 | | 0.7554 | 0.3071 | 3000 | 0.6720 | 0.8165 | 0.7938 | 0.8023 | 0.8165 | | 0.6805 | 0.4095 | 4000 | 0.6185 | 0.828 | 0.8107 | 0.8157 | 0.828 | | 0.6192 | 0.5119 | 5000 | 0.5865 | 0.8322 | 0.8233 | 0.8226 | 0.8322 | | 0.5963 | 0.6143 | 6000 | 0.5462 | 0.8475 | 0.8333 | 0.8356 | 0.8475 | | 0.5466 | 0.7166 | 7000 | 0.5384 | 0.849 | 0.8386 | 0.8398 | 0.849 | | 0.5447 | 0.8190 | 8000 | 0.4923 | 0.8582 | 0.8440 | 0.8491 | 0.8582 | | 0.5288 | 0.9214 | 9000 | 0.4835 | 0.8617 | 0.8494 | 0.8533 | 0.8617 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1