--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - accuracy - precision - f1 - recall model-index: - name: newsdata-bertimbal results: [] --- # newsdata-bertimbal This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2924 - Accuracy: 0.9183 - Precision: 0.9118 - F1: 0.9144 - Recall: 0.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1 | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7154 | 0.1024 | 1000 | 0.5830 | 0.856 | 0.8352 | 0.8399 | 0.856 | | 0.5232 | 0.2048 | 2000 | 0.4769 | 0.874 | 0.8647 | 0.8633 | 0.874 | | 0.4342 | 0.3071 | 3000 | 0.3966 | 0.891 | 0.8800 | 0.8826 | 0.891 | | 0.3969 | 0.4095 | 4000 | 0.3509 | 0.9023 | 0.8900 | 0.8949 | 0.9023 | | 0.3719 | 0.5119 | 5000 | 0.3263 | 0.9102 | 0.9055 | 0.9054 | 0.9102 | | 0.3638 | 0.6143 | 6000 | 0.3209 | 0.909 | 0.9017 | 0.9035 | 0.909 | | 0.3217 | 0.7166 | 7000 | 0.3131 | 0.9068 | 0.9025 | 0.9034 | 0.9068 | | 0.3169 | 0.8190 | 8000 | 0.2952 | 0.9167 | 0.9101 | 0.9125 | 0.9167 | | 0.3147 | 0.9214 | 9000 | 0.2924 | 0.9183 | 0.9118 | 0.9144 | 0.9183 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1