update model card README.md
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [microsoft/layoutlmv2-large-uncased](https://huggingface.co/microsoft/layoutlmv2-large-uncased) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss:
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -33,35 +33,59 @@ More information needed
|
|
33 |
### Training hyperparameters
|
34 |
|
35 |
The following hyperparameters were used during training:
|
36 |
-
- learning_rate:
|
37 |
- train_batch_size: 2
|
38 |
- eval_batch_size: 2
|
39 |
- seed: 250500
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
-
- num_epochs:
|
43 |
|
44 |
### Training results
|
45 |
|
46 |
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
-
|
|
49 |
-
|
|
50 |
-
|
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
-
- Transformers 4.
|
65 |
- Pytorch 1.8.0+cu101
|
66 |
-
- Datasets 1.
|
67 |
- Tokenizers 0.10.3
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [microsoft/layoutlmv2-large-uncased](https://huggingface.co/microsoft/layoutlmv2-large-uncased) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 8.5806
|
18 |
|
19 |
## Model description
|
20 |
|
|
|
33 |
### Training hyperparameters
|
34 |
|
35 |
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 2e-05
|
37 |
- train_batch_size: 2
|
38 |
- eval_batch_size: 2
|
39 |
- seed: 250500
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 6
|
43 |
|
44 |
### Training results
|
45 |
|
46 |
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
+
| No log | 0.17 | 100 | 4.6181 |
|
49 |
+
| No log | 0.33 | 200 | 4.3357 |
|
50 |
+
| No log | 0.5 | 300 | 4.3897 |
|
51 |
+
| No log | 0.66 | 400 | 4.8238 |
|
52 |
+
| 4.4277 | 0.83 | 500 | 3.9088 |
|
53 |
+
| 4.4277 | 0.99 | 600 | 3.6063 |
|
54 |
+
| 4.4277 | 1.16 | 700 | 3.4278 |
|
55 |
+
| 4.4277 | 1.32 | 800 | 3.5428 |
|
56 |
+
| 4.4277 | 1.49 | 900 | 3.4331 |
|
57 |
+
| 3.0413 | 1.65 | 1000 | 3.3699 |
|
58 |
+
| 3.0413 | 1.82 | 1100 | 3.3622 |
|
59 |
+
| 3.0413 | 1.98 | 1200 | 3.5294 |
|
60 |
+
| 3.0413 | 2.15 | 1300 | 3.7918 |
|
61 |
+
| 3.0413 | 2.31 | 1400 | 3.4007 |
|
62 |
+
| 2.0843 | 2.48 | 1500 | 4.0296 |
|
63 |
+
| 2.0843 | 2.64 | 1600 | 4.1852 |
|
64 |
+
| 2.0843 | 2.81 | 1700 | 3.6690 |
|
65 |
+
| 2.0843 | 2.97 | 1800 | 3.6089 |
|
66 |
+
| 2.0843 | 3.14 | 1900 | 5.5534 |
|
67 |
+
| 1.7527 | 3.3 | 2000 | 4.7498 |
|
68 |
+
| 1.7527 | 3.47 | 2100 | 5.2691 |
|
69 |
+
| 1.7527 | 3.63 | 2200 | 5.1324 |
|
70 |
+
| 1.7527 | 3.8 | 2300 | 4.5912 |
|
71 |
+
| 1.7527 | 3.96 | 2400 | 4.1727 |
|
72 |
+
| 1.2037 | 4.13 | 2500 | 6.1174 |
|
73 |
+
| 1.2037 | 4.29 | 2600 | 5.7172 |
|
74 |
+
| 1.2037 | 4.46 | 2700 | 5.8843 |
|
75 |
+
| 1.2037 | 4.62 | 2800 | 6.4232 |
|
76 |
+
| 1.2037 | 4.79 | 2900 | 7.4486 |
|
77 |
+
| 0.8386 | 4.95 | 3000 | 7.1946 |
|
78 |
+
| 0.8386 | 5.12 | 3100 | 7.9869 |
|
79 |
+
| 0.8386 | 5.28 | 3200 | 8.0310 |
|
80 |
+
| 0.8386 | 5.45 | 3300 | 8.2954 |
|
81 |
+
| 0.8386 | 5.61 | 3400 | 8.5361 |
|
82 |
+
| 0.4389 | 5.78 | 3500 | 8.6040 |
|
83 |
+
| 0.4389 | 5.94 | 3600 | 8.5806 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
+
- Transformers 4.15.0
|
89 |
- Pytorch 1.8.0+cu101
|
90 |
+
- Datasets 1.17.0
|
91 |
- Tokenizers 0.10.3
|