File size: 4,955 Bytes
8b7bf53 b92909e 8b7bf53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
library_name: peft
base_model: Viet-Mistral/Vistral-7B-Chat
language:
- vi
tags:
- LLMs
- Vietnamese
- Medical
- Health
- Vistral
- NLP
license: apache-2.0
datasets:
- trungtienluong/child-care-3
---
## Model Description
**viBioGPT-7B-instruct** is a Vietnamese Large Language Model (LLM) fine-tuned for the task of Question Answering within
the medical and healthcare domain. This model uses pre-trained [Vistral-Chat-7B](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat), then QLora technique
to fine-tune.
Training dataset: [hungnm/vietnamese-medical-qa](https://huggingface.co/datasets/hungnm/vietnamese-medical-qa)
You can find source code: [Github](https://github.com/hungnm-ai/viBioGPT)
## How to Use
Install libraries
```shell
pip install peft==0.7.1 bitsandbytes==0.41.3.post2 transformers==4.36.2 torch==2.1.2
```
Because this adapter uses pretrained [Viet-Mistral/Vistral-7B-Chat](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat), ensure that you granted access to that model and set your huggingface token in code.
```python
import torch
from peft import PeftModel
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
HF_TOKEN = "<your_hf_token>"
model_name = "Viet-Mistral/Vistral-7B-Chat"
adapter = "hungnm/viBioGPT-7B-instruct-qlora-adapter"
compute_dtype = getattr(torch, "bfloat16")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(model_name,
quantization_config=bnb_config,
device_map={"": 0},
token=HF_TOKEN
)
model = PeftModel.from_pretrained(model, adapter)
# load and config tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name,
token=HF_TOKEN)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = tokenizer.eos_token_id
system_prompt = ("Bạn là một trợ lý ảo AI trong lĩnh vực Y học, Sức Khỏe. Tên của bạn là AI-Doctor. "
"Nhiệm vụ của bạn là trả lời các thắc mắc hoặc các câu hỏi về Y học, Sức khỏe.")
question = "tôi có một ít nhân sâm nhưng đang bị viêm dạ dày. Vậy tôi có nên ăn nhân sâm ko?"
conversation = [
{
"role": "system",
"content": system_prompt},
{
"role": "user",
"content": question
}]
instruction_str = tokenizer.apply_chat_template(conversation=conversation,
tokenize=False)
token_ids = tokenizer([instruction_str], return_tensors="pt")["input_ids"]
token_ids = token_ids.to(model.device)
outputs = model.generate(input_ids=token_ids,
max_new_tokens=768,
do_sample=True,
temperature=0.1,
top_p=0.95,
top_k=40,
repetition_penalty=1.2)
all_token_ids = outputs[0].tolist()
output_token_ids = all_token_ids[token_ids.shape[-1]:]
output = tokenizer.decode(output_token_ids)
print(output)
```
```text
Chào anh!
Nhân sâm được biết đến như loại thảo dược quý hiếm và rất tốt cho sức khoẻ con người tuy nhiên không phải ai cũng dùng được nó đặc biệt với những bệnh nhân đau dạ dày thì càng cần thận trọng khi sử dụng vì nếu lạm dụng sẽ gây ra nhiều tác hại nghiêm trọng tới hệ tiêu hoá nói chung và tình trạng đau dạ dày nói riêng .
Vì vậy trước tiên anh hãy điều trị dứt điểm căn bênh này rồi mới nghĩ tới việc bổ sung thêm dinh dưỡng từ nhân sâm nhé !
Chúc anh mau khỏi bệnh ạ!
```
### Run on Google colab
[Notebook](https://colab.research.google.com/drive/1yo53qWNo6bsfBNjp0IgLORQG0Howx30o?usp=drive_link)
### Disclaimer
Despite thorough testing, our model may still carry risks such as hallucination, toxic content, and bias. We urge users to recognize and address these risks before use. Users are responsible for compliance with regulations, and the authors disclaim liability for any resulting damages.**
### Framework versions
```shell
accelerate==0.21.0
sentencepiece==0.1.99
transformers==4.36.2
peft==0.7.1
bitsandbytes==0.41.3.post2
wandb==0.16.1
numpy==1.26.2
datasets==2.15.0
python-dotenv==1.0.1
flash-attn==2.5.3
```
## Citation
If you find our project helpful, please star our repo and cite our work. Thanks!
```bibtex
@misc{viBioGPT,
title={Vietnamese Medical QA: Question Answering dataset for medical in Vietnamese},
author={Hung Nguyen},
howpublished={\url{https://github.com/hungnm-ai/viBioGPT}},
year={2024},
}
``` |