File size: 12,494 Bytes
482db76
 
2843dfe
 
10532b2
482db76
2843dfe
 
10532b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482db76
 
 
 
 
 
 
 
 
 
77d052e
482db76
 
 
 
 
 
 
 
 
 
 
 
 
9637b77
482db76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8799bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e186426
06d0360
e186426
482db76
 
 
 
 
 
 
 
 
 
 
 
 
 
8799bc6
482db76
 
 
 
 
 
 
06d0360
 
 
482db76
 
 
06d0360
 
 
482db76
 
 
82558bf
482db76
06d0360
482db76
 
 
 
06d0360
 
 
482db76
 
 
82558bf
 
 
482db76
 
 
06d0360
 
 
482db76
 
 
 
06d0360
 
 
482db76
 
 
06d0360
482db76
 
 
 
 
 
 
06d0360
482db76
 
 
06d0360
482db76
 
 
 
 
06d0360
 
 
482db76
 
 
 
 
 
06d0360
482db76
 
 
 
 
06d0360
482db76
 
 
 
 
b8d0cbf
482db76
 
 
 
 
06d0360
482db76
 
 
 
b8d0cbf
06d0360
b8d0cbf
482db76
 
96b844d
b8d0cbf
 
482db76
 
 
 
 
 
 
d92e3ec
482db76
680242d
 
 
 
 
 
 
 
 
 
 
 
 
482db76
 
 
a70cafa
 
 
 
482db76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10532b2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
---
base_model: tiiuae/Falcon3-10B-Base
library_name: transformers
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
tags:
- falcon3
model-index:
- name: Falcon3-10B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 78.17
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 44.82
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 25.91
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.51
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 13.61
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.1
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Instruct
      name: Open LLM Leaderboard
---

<div align="center">
    <img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
</div>

# Falcon3-10B-Instruct

**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.

This repository contains the **Falcon3-10B-Instruct**. It achieves state-of-the-art results (at the time of release) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-10B-Instruct supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K.


## Model Details
- Architecture
  - Transformer-based causal decoder-only architecture
  - 40 decoder blocks
  - Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
  - Wider head dimension: 256
  - High RoPE value to support long context understanding: 1000042
  - Uses SwiGLu and RMSNorm
  - 32K context length
  - 131K vocab size
- Depth up-scaled from **Falcon3-7B-Base** with 2 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
- Posttrained on 1.2 million samples of STEM, conversational, code, safety and function call data
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024


## Getting started

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM


from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "tiiuae/Falcon3-10B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many hours in one day?"
messages = [
    {"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1024
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

</details>

<br>

## Benchmarks
We report the official HuggingFace leaderboard normalized evaluations [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) in the following table.
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Benchmark</th>
            <th>Yi-1.5-9B-Chat</th>
            <th>Mistral-Nemo-Instruct-2407 (12B)</th>
            <th>Gemma-2-9b-it</th>
            <th>Falcon3-10B-Instruct</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>IFEval</td>
            <td>60.46</td>
            <td>63.80</td>
            <td>74.36</td>
            <td><b>78.17</b></td>
        </tr>
        <tr>
            <td>BBH (3-shot)</td>
            <td>36.95</td>
            <td>29.68</td>
            <td>42.14</td>
            <td><b>44.82</b></td>
        </tr>
        <tr>
            <td>MATH Lvl-5 (4-shot)</td>
            <td>12.76</td>
            <td>6.50</td>
            <td>0.23</td>
            <td><b>25.91</b></td>
        </tr>              
        <tr>
            <td>GPQA (0-shot)</td>
            <td>11.30</td>
            <td>5.37</td>
            <td><b>14.77</b></td>
            <td>10.51</td>
        </tr>
        <tr>
            <td>MUSR (0-shot)</td>
            <td>12.84</td>
            <td>8.48</td>
            <td>9.74</td>
            <td><b>13.61</b></td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)</td>
            <td>33.06</td>
            <td>27.97</td>
            <td>31.95</td>
            <td><b>38.10</b></td>
        </tr>        
    </tbody>
</table>

Also, we report in the following table our internal pipeline benchmarks.
 - We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
 - We report **raw scores** obtained by applying chat template and fewshot_as_multiturn.
 - We use same batch-size across all models.

<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Category</th>
            <th>Benchmark</th>       
            <th>Yi-1.5-9B-Chat</th>
            <th>Mistral-Nemo-Instruct-2407 (12B)</th>
            <th>Falcon3-10B-Instruct</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td rowspan="3">General</td>
            <td>MMLU (5-shot)</td>
            <td>68.8</td>
            <td>66.0</td>
            <td><b>73.9</b></td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)</td>
            <td>38.8</td>
            <td>34.3</td>
            <td><b>44</b></td>
        </tr>
        <tr>
            <td>IFEval</td>
            <td>57.8</td>
            <td>63.4</td>
            <td><b>78</b></td>
        </tr>
        <tr>
            <td rowspan="3">Math</td>
            <td>GSM8K (5-shot)</td>
            <td>77.1</td>
            <td>77.6</td>
            <td><b>84.9</b></td>
        </tr>
        <tr>
            <td>GSM8K (8-shot, COT)</td>
            <td>76</td>
            <td>80.4</td>
            <td><b>84.6</b></td>
        </tr>
        <tr>
            <td>MATH Lvl-5 (4-shot)</td>
            <td>3.3</td>
            <td>5.9</td>
            <td><b>22.1</b></td>
        </tr>
        <tr>
            <td rowspan="5">Reasoning</td>
            <td>Arc Challenge (25-shot)</td>
            <td>58.3</td>
            <td>63.4</td>
            <td><b>66.2</b></td>
        </tr>
        <tr>
            <td>GPQA (0-shot)</td>
            <td><b>35.6</b></td>
            <td>33.2</td>
            <td>33.5</td>
        </tr>
        <tr>
            <td>GPQA (0-shot, COT)</td>
            <td>16</td>
            <td>12.7</td>
            <td><b>32.6</b></td>
        </tr>
        <tr>
            <td>MUSR (0-shot)</td>
            <td><b>41.9</b></td>
            <td>38.1</td>
            <td>41.1</td>
        </tr>
        <tr>
            <td>BBH (3-shot)</td>
            <td>50.6</td>
            <td>47.5</td>
            <td><b>58.4</b></td>
        </tr>
        <tr>
            <td rowspan="4">CommonSense Understanding</td>
            <td>PIQA (0-shot)</td>
            <td>76.4</td>
            <td>78.2</td>
            <td><b>78.4</b></td>
        </tr>
        <tr>
            <td>SciQ (0-shot)</td>
            <td>61.7</td>
            <td>76.4</td>
            <td><b>90.4</b></td>
        </tr>
        <tr>
            <td>Winogrande (0-shot)</td>
            <td>-</td>
            <td>-</td>
            <td>71</td>
        </tr>
        <tr>
            <td>OpenbookQA (0-shot)</td>
            <td>43.2</td>
            <td>47.4</td>
            <td><b>48.2</b></td>
        </tr>
        <tr>
            <td rowspan="2">Instructions following</td>
            <td>MT-Bench (avg)</td>
            <td>8.3</td>
            <td><b>8.6</b></td>
            <td>8.2</td>
        </tr>
        <tr>
            <td>Alpaca (WC)</td>
            <td>25.8</td>
            <td><b>45.4</b></td>
            <td>24.7</td>
        </tr>
        <tr>
            <td>Tool use</td>
            <td>BFCL AST (avg)</td>
            <td>48.4</td>
            <td>74.2</td>
            <td><b>90.5</b></td>
        </tr>
        <tr>
            <td rowspan="2">Code</td>
            <td>EvalPlus (0-shot) (avg)</td>
            <td>69.4</td>
            <td>58.9</td>
            <td><b>74.7</b></td>
        </tr>
        <tr>
            <td>Multipl-E (0-shot) (avg)</td>
            <td>-</td>
            <td>34.5</td>
            <td><b>45.8</b></td>
        </tr>      
    </tbody>
</table>

## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
  
## Technical Report

Coming soon....

## Citation
If Falcon3 family were helpful in your work, feel free to give us a cite.

```
@misc{Falcon3,
    title = {The Falcon 3 family of Open Models},
    author = {TII Team},
    month = {December},
    year = {2024}
}
```


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/tiiuae__Falcon3-10B-Instruct-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |35.19|
|IFEval (0-Shot)    |78.17|
|BBH (3-Shot)       |44.82|
|MATH Lvl 5 (4-Shot)|25.91|
|GPQA (0-shot)      |10.51|
|MuSR (0-shot)      |13.61|
|MMLU-PRO (5-shot)  |38.10|