File size: 4,417 Bytes
8c6e7c5
f42ec5a
bab14db
8c6e7c5
 
 
bab14db
 
 
 
 
 
 
f42ec5a
 
bab14db
 
f42ec5a
bab14db
 
 
 
 
f42ec5a
 
 
 
24619a8
bab14db
f42ec5a
bab14db
 
 
f42ec5a
bab14db
43fb3cd
bab14db
 
 
 
 
 
 
f42ec5a
bab14db
f42ec5a
 
bab14db
f42ec5a
bab14db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f42ec5a
bab14db
f42ec5a
 
bab14db
f42ec5a
bab14db
 
 
 
 
 
 
 
f42ec5a
bab14db
 
 
 
 
 
f42ec5a
bab14db
f42ec5a
 
bab14db
f42ec5a
bab14db
f42ec5a
bab14db
 
 
 
 
 
 
 
43fb3cd
bab14db
 
 
 
 
 
f42ec5a
bab14db
f42ec5a
 
 
 
 
 
 
bab14db
8ad640d
 
063d93b
6a7eaf7
 
 
 
 
063d93b
66224d2
 
7678874
063d93b
 
3b5da8b
063d93b
3b5da8b
063d93b
 
3b5da8b
063d93b
3b5da8b
 
 
 
 
 
 
 
 
 
 
 
 
f8fb5e2
 
 
3b5da8b
 
f8fb5e2
 
 
3b5da8b
 
f8fb5e2
 
29fafdc
063d93b
 
 
bab14db
 
 
f42ec5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
language:
- en
tags:
- falcon3
---


#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)


# TL;DR

# Model Details

## Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Transformer-base
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon-LLM License 2.0

<br>

# Usage

Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):

## Using the Pytorch model with 🤗 transformers

### Running the model on a CPU

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU using `torch.compile`

<details>
<summary> Click to expand </summary>

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)

model = torch.compile(model)

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>


# Training Details

## Training Data

## Training Procedure

### Training Hyperparameters

| **Hyperparameter** | **Value**  | **Comment**                               |
|--------------------|------------|-------------------------------------------|
| Precision          | `bfloat16` |                                           |
| Optimizer          | AdamW      |                                           |
| Max learning rate  |      | Following a WSD (warmup-stable-decay) learning rate schedule |
| Weight decay       |        |                                           |
| Batch size         |        |                                           |

# Evaluation

<table>
    <colgroup>
        <col style="text-align: center;">
        <col style="text-align: center;">
        <col style="text-align: center;">
    </colgroup>
    <tr>
        <th>Metrics</th>
        <th>Llama3.1-8B</th>
        <th style="background-color: rgba(80, 15, 213, 0.5);">Falcon3-7B-Base</th>
    </tr>
    <tr>
        <td>MUSR</td>
        <td>Row 1, Cell 2</td>
        <td style="background-color: rgba(80, 15, 213, 0.5);">18.70</td>
    </tr>
    <tr>
        <td>BBH</td>
        <td>Row 2, Cell 2</td>
        <td style="background-color: rgba(80, 15, 213, 0.5);">32.68</td>
    </tr>
    <tr>
        <td>MMLU_PRO</td>
        <td>Row 2, Cell 2</td>
        <td style="background-color: rgba(80, 15, 213, 0.5);">32.43</td>
    </tr>
    <tr>
        <td>IF_EVAL</td>
        <td>Row 2, Cell 2</td>
        <td style="background-color: rgba(80, 15, 213, 0.5);">34.27</td>
    </tr>
    <tr>
        <th>GPQA</th>
        <th>Row 2, Cell 2</th>
        <th style="background-color: rgba(80, 15, 213, 0.5);">13.97</th>
    </tr>
    <tr>
        <th>MATH</th>
        <th>Row 2, Cell 2</th>
        <th style="background-color: rgba(80, 15, 213, 0.5);">18.02</th>
    </tr>
    <tr>
        <th>AVG</th>
        <th>Row 2, Cell 2</th>
        <th style="background-color: rgba(80, 15, 213, 0.5);">24.85</th>
    </tr>
</table>


# Citation