File size: 4,393 Bytes
0c45e91 50e6f29 0c45e91 50e6f29 0c45e91 1915728 0c45e91 1915728 0c45e91 1915728 0c45e91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
base_model: tiiuae/Falcon3-7B-Instruct
language:
- en
- fr
- es
- pt
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
tags:
- falcon3
---
# Falcon3-7B-Instruct-GPTQ-Int8
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
**Falcon3-7B-Instruct** achieves state-of-the-art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-7B-Instruct supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K.
This repository contains the GPTQ-quantized 8-bit instruction-tuned 7B Falcon3 model.
## Model Details
- Architecture
- Transformer-based causal decoder-only architecture
- 28 decoder blocks
- Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
- Wider head dimension: 256
- High RoPE value to support long context understanding: 1000042
- Uses SwiGLU and RMSNorm
- 32K context length
- 131K vocab size
- Pretrained on 14 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
- Posttrained on 1.2 million samples of STEM, conversational, code, safety and function call data
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024
- Quantization: GPTQ 8-bit
## Getting started
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "tiiuae/Falcon3-7B-Instruct-GPTQ-Int8"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many hours in one day?"
messages = [
{"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
</details>
<br>
# Benchmarks
We report in the following table our internal pipeline benchmarks:
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
<colgroup>
<col style="width: 10%;">
<col style="width: 10%;">
<col style="width: 10%;">
<col style="width: 10%;">
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
</colgroup>
<thead>
<tr>
<th>Benchmark</th>
<th>Falcon3-7B-Instruct</th>
<th>Falcon3-7B-Instruct-GPTQ-Int4</th>
<th>Falcon3-7B-Instruct-AWQ</th>
<th>Falcon3-7B-Instruct-GPTQ-Int8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMLU</td>
<td>67.7</td>
<td>65.6</td>
<td>66.4</td>
<td>67.6</td>
</tr>
<tr>
<td>MMLU-PRO</td>
<td>40.9</td>
<td>39.1</td>
<td>39.9</td>
<td>40.9</td>
</tr>
<tr>
<td>IFEval</td>
<td>75.1</td>
<td>72.2</td>
<td>74.8</td>
<td>77.0</td>
</tr>
</tbody>
</table>
## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
## Technical Report
Coming soon....
## Citation
If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
```
@misc{Falcon3,
title = {The Falcon 3 Family of Open Models},
url = {https://huggingface.co/blog/falcon3},
author = {Falcon-LLM Team},
month = {December},
year = {2024}
}
``` |