Create handler.py
Browse files- handler.py +22 -0
handler.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoImageProcessor, Swinv2Model
|
2 |
+
import torch
|
3 |
+
|
4 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
5 |
+
|
6 |
+
class EndpointHandler():
|
7 |
+
def __init__(self, path=""):
|
8 |
+
self.model = Swinv2Model.from_pretrained("microsoft/moooji/swinv2-large-patch4-window12to24-192to384-22kto1k-ft").to(device)
|
9 |
+
self.processor = AutoImageProcessor.from_pretrained("microsoft/moooji/swinv2-large-patch4-window12to24-192to384-22kto1k-ft")
|
10 |
+
|
11 |
+
def __call__(self, data: Any) -> List[float]:
|
12 |
+
inputs = data.pop("inputs", data)
|
13 |
+
|
14 |
+
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
15 |
+
inputs = self.processor(image, return_tensors="pt").to(device)
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
|
20 |
+
last_hidden_states = outputs.last_hidden_state
|
21 |
+
return last_hidden_states[2].tolist()
|
22 |
+
|