from transformers import AutoImageProcessor, Swinv2Model import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class EndpointHandler(): def __init__(self, path=""): self.model = Swinv2Model.from_pretrained("microsoft/moooji/swinv2-large-patch4-window12to24-192to384-22kto1k-ft").to(device) self.processor = AutoImageProcessor.from_pretrained("microsoft/moooji/swinv2-large-patch4-window12to24-192to384-22kto1k-ft") def __call__(self, data: Any) -> List[float]: inputs = data.pop("inputs", data) image = Image.open(BytesIO(base64.b64decode(inputs['image']))) inputs = self.processor(image, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state return last_hidden_states[2].tolist()