from typing import Dict, List, Any from PIL import Image import torch import base64 from io import BytesIO from transformers import AutoImageProcessor, Swinv2Model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class EndpointHandler(): def __init__(self, path=""): self.model = Swinv2Model.from_pretrained("microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft", add_pooling_layer = True).to(device) self.processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft") def __call__(self, data: Any) -> List[float]: inputs = data.pop("inputs", data) image = Image.open(BytesIO(base64.b64decode(inputs['image']))) inputs = self.processor(image, return_tensors="pt").to(device) with torch.no_grad(): outputs = self.model(**inputs) pooler_output = outputs.pooler_output return pooler_output[0].tolist()