timm
/

Image Classification
timm
PyTorch
Safetensors
File size: 22,600 Bytes
a35c9b0
 
 
 
e907225
a35c9b0
 
 
 
 
 
 
 
 
 
 
 
 
e907225
a35c9b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e907225
 
 
a35c9b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e907225
 
 
a35c9b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e907225
 
 
 
 
 
 
a35c9b0
 
 
 
 
 
 
 
 
e907225
 
 
a35c9b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e907225
a35c9b0
 
e907225
a35c9b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e907225
a35c9b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
- imagenet-12k
---
# Model card for coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k

A timm specific CoAtNet (w/ a MLP Log-CPB (continuous log-coordinate relative position bias motivated by Swin-V2) image classification model. Pretrained in `timm` on ImageNet-12k (a 11821 class subset of full ImageNet-22k) and fine-tuned on ImageNet-1k by Ross Wightman.

ImageNet-12k training performed on TPUs thanks to support of the [TRC](https://sites.research.google/trc/about/) program.

Fine-tuning performed on 8x GPU [Lambda Labs](https://lambdalabs.com/) cloud instances.

### Model Variants in [maxxvit.py](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/maxxvit.py)

MaxxViT covers a number of related model architectures that share a common structure including:
- CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages.
- MaxViT - Uniform blocks across all stages, each containing a MBConv (depthwise-separable) convolution block followed by two self-attention blocks with different partitioning schemes (window followed by grid).
- CoAtNeXt - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in CoAtNet. All normalization layers are LayerNorm (no BatchNorm).
- MaxxViT - A timm specific arch that uses ConvNeXt blocks in place of MBConv blocks in MaxViT. All normalization layers are LayerNorm (no BatchNorm).
- MaxxViT-V2 - A MaxxViT variation that removes the window block attention leaving only ConvNeXt blocks and grid attention w/ more width to compensate.

Aside from the major variants listed above, there are more subtle changes from model to model. Any model name with the string `rw` are `timm` specific configs w/ modelling adjustments made to favour PyTorch eager use. These were created while training initial reproductions of the models so there are variations.
All models with the string `tf` are models exactly matching Tensorflow based models by the original paper authors with weights ported to PyTorch. This covers a number of MaxViT models. The official CoAtNet models were never released.

## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 73.9
  - GMACs: 15.2
  - Activations (M): 54.8
  - Image size: 224 x 224
- **Papers:**
  - CoAtNet: Marrying Convolution and Attention for All Data Sizes: https://arxiv.org/abs/2201.03545
  - Swin Transformer V2: Scaling Up Capacity and Resolution: https://arxiv.org/abs/2111.09883
- **Dataset:** ImageNet-1k
- **Pretrain Dataset:** ImageNet-12k

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 128, 112, 112])
    #  torch.Size([1, 128, 56, 56])
    #  torch.Size([1, 256, 28, 28])
    #  torch.Size([1, 512, 14, 14])
    #  torch.Size([1, 1024, 7, 7])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
### By Top-1
|model                                                                                                                   |top1 |top5 |samples / sec  |Params (M)     |GMAC  |Act (M)|
|------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:|
|[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k)                    |88.53|98.64|          21.76|         475.77|534.14|1413.22|
|[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k)                    |88.32|98.54|          42.53|         475.32|292.78| 668.76|
|[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)                        |88.20|98.53|          50.87|         119.88|138.02| 703.99|
|[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)                      |88.04|98.40|          36.42|         212.33|244.75| 942.15|
|[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)                      |87.98|98.56|          71.75|         212.03|132.55| 445.84|
|[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)                        |87.92|98.54|         104.71|         119.65| 73.80| 332.90|
|[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k)        |87.81|98.37|         106.55|         116.14| 70.97| 318.95|
|[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k)  |87.47|98.37|         149.49|         116.09| 72.98| 213.74|
|[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k)            |87.39|98.31|         160.80|          73.88| 47.69| 209.43|
|[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k)        |86.89|98.02|         375.86|         116.14| 23.15|  92.64|
|[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k)  |86.64|98.02|         501.03|         116.09| 24.20|  62.77|
|[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k)                                          |86.60|97.92|          50.75|         119.88|138.02| 703.99|
|[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k)                      |86.57|97.89|         631.88|          73.87| 15.09|  49.22|
|[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k)                                        |86.52|97.88|          36.04|         212.33|244.75| 942.15|
|[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k)            |86.49|97.90|         620.58|          73.88| 15.18|  54.78|
|[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k)                                          |86.29|97.80|         101.09|         119.65| 73.80| 332.90|
|[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k)                                        |86.23|97.69|          70.56|         212.03|132.55| 445.84|
|[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k)                                        |86.10|97.76|          88.63|          69.13| 67.26| 383.77|
|[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)                                          |85.67|97.58|         144.25|          31.05| 33.49| 257.59|
|[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k)                                        |85.54|97.46|         188.35|          69.02| 35.87| 183.65|
|[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)                                          |85.11|97.38|         293.46|          30.98| 17.53| 123.42|
|[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k)                                        |84.93|96.97|         247.71|         211.79| 43.68| 127.35|
|[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k)          |84.90|96.96|        1025.45|          41.72|  8.11|  40.13|
|[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k)                                          |84.85|96.99|         358.25|         119.47| 24.04|  95.01|
|[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k)                      |84.63|97.06|         575.53|          66.01| 14.67|  58.38|
|[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k)                              |84.61|96.74|         625.81|          73.88| 15.18|  54.78|
|[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k)                        |84.49|96.76|         693.82|          64.90| 10.75|  49.30|
|[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k)                                        |84.43|96.83|         647.96|          68.93| 11.66|  53.17|
|[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k)                          |84.23|96.78|         807.21|          29.15|  6.77|  46.92|
|[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k)                                        |83.62|96.38|         989.59|          41.72|  8.04|  34.60|
|[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k)                                    |83.50|96.50|        1100.53|          29.06|  5.11|  33.11|
|[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)                                          |83.41|96.59|        1004.94|          30.92|  5.60|  35.78|
|[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k)                              |83.36|96.45|        1093.03|          41.69|  7.85|  35.47|
|[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k)                              |83.11|96.33|        1276.88|          23.70|  6.26|  23.05|
|[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k)                        |83.03|96.34|        1341.24|          16.78|  4.37|  26.05|
|[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k)                          |82.96|96.26|        1283.24|          15.50|  4.47|  31.92|
|[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k)                                    |82.93|96.23|        1218.17|          15.45|  4.46|  30.28|
|[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k)                                  |82.39|96.19|        1600.14|          27.44|  4.67|  22.04|
|[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k)                                        |82.39|95.84|        1831.21|          27.44|  4.43|  18.73|
|[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k)                        |82.05|95.87|        2109.09|          15.15|  2.62|  20.34|
|[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k)                                |81.95|95.92|        2525.52|          14.70|  2.47|  12.80|
|[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k)                                  |81.70|95.64|        2344.52|          15.14|  2.41|  15.41|
|[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k)                          |80.53|95.21|        1594.71|           7.52|  1.85|  24.86|


### By Throughput (samples / sec)
|model                                                                                                                   |top1 |top5 |samples / sec  |Params (M)     |GMAC  |Act (M)|
|------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:|
|[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k)                                |81.95|95.92|        2525.52|          14.70|  2.47|  12.80|
|[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k)                                  |81.70|95.64|        2344.52|          15.14|  2.41|  15.41|
|[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k)                        |82.05|95.87|        2109.09|          15.15|  2.62|  20.34|
|[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k)                                        |82.39|95.84|        1831.21|          27.44|  4.43|  18.73|
|[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k)                                  |82.39|96.19|        1600.14|          27.44|  4.67|  22.04|
|[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k)                          |80.53|95.21|        1594.71|           7.52|  1.85|  24.86|
|[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k)                        |83.03|96.34|        1341.24|          16.78|  4.37|  26.05|
|[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k)                          |82.96|96.26|        1283.24|          15.50|  4.47|  31.92|
|[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k)                              |83.11|96.33|        1276.88|          23.70|  6.26|  23.05|
|[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k)                                    |82.93|96.23|        1218.17|          15.45|  4.46|  30.28|
|[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k)                                    |83.50|96.50|        1100.53|          29.06|  5.11|  33.11|
|[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k)                              |83.36|96.45|        1093.03|          41.69|  7.85|  35.47|
|[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k)          |84.90|96.96|        1025.45|          41.72|  8.11|  40.13|
|[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k)                                          |83.41|96.59|        1004.94|          30.92|  5.60|  35.78|
|[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k)                                        |83.62|96.38|         989.59|          41.72|  8.04|  34.60|
|[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k)                          |84.23|96.78|         807.21|          29.15|  6.77|  46.92|
|[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k)                        |84.49|96.76|         693.82|          64.90| 10.75|  49.30|
|[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k)                                        |84.43|96.83|         647.96|          68.93| 11.66|  53.17|
|[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k)                      |86.57|97.89|         631.88|          73.87| 15.09|  49.22|
|[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k)                              |84.61|96.74|         625.81|          73.88| 15.18|  54.78|
|[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k)            |86.49|97.90|         620.58|          73.88| 15.18|  54.78|
|[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k)                      |84.63|97.06|         575.53|          66.01| 14.67|  58.38|
|[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k)  |86.64|98.02|         501.03|         116.09| 24.20|  62.77|
|[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k)        |86.89|98.02|         375.86|         116.14| 23.15|  92.64|
|[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k)                                          |84.85|96.99|         358.25|         119.47| 24.04|  95.01|
|[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k)                                          |85.11|97.38|         293.46|          30.98| 17.53| 123.42|
|[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k)                                        |84.93|96.97|         247.71|         211.79| 43.68| 127.35|
|[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k)                                        |85.54|97.46|         188.35|          69.02| 35.87| 183.65|
|[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k)            |87.39|98.31|         160.80|          73.88| 47.69| 209.43|
|[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k)  |87.47|98.37|         149.49|         116.09| 72.98| 213.74|
|[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k)                                          |85.67|97.58|         144.25|          31.05| 33.49| 257.59|
|[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k)        |87.81|98.37|         106.55|         116.14| 70.97| 318.95|
|[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k)                        |87.92|98.54|         104.71|         119.65| 73.80| 332.90|
|[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k)                                          |86.29|97.80|         101.09|         119.65| 73.80| 332.90|
|[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k)                                        |86.10|97.76|          88.63|          69.13| 67.26| 383.77|
|[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k)                      |87.98|98.56|          71.75|         212.03|132.55| 445.84|
|[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k)                                        |86.23|97.69|          70.56|         212.03|132.55| 445.84|
|[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k)                        |88.20|98.53|          50.87|         119.88|138.02| 703.99|
|[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k)                                          |86.60|97.92|          50.75|         119.88|138.02| 703.99|
|[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k)                    |88.32|98.54|          42.53|         475.32|292.78| 668.76|
|[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k)                      |88.04|98.40|          36.42|         212.33|244.75| 942.15|
|[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k)                                        |86.52|97.88|          36.04|         212.33|244.75| 942.15|
|[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k)                    |88.53|98.64|          21.76|         475.77|534.14|1413.22|

## Citation
```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
```bibtex
@article{tu2022maxvit,
  title={MaxViT: Multi-Axis Vision Transformer},
  author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
  journal={ECCV},
  year={2022},
}        
```
```bibtex
@article{dai2021coatnet,
  title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
  author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
  journal={arXiv preprint arXiv:2106.04803},
  year={2021}
}
```