--- tags: - image-classification - timm - transformers library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for ese_vovnet57b.ra4_e3600_r256_in1k A VoVNet-v2 image classification model. Pretrained on ImageNet-1k in `timm` by Ross Wightman using MobileNetV4 inspired RA4 recipe. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 38.6 - GMACs: 11.7 - Activations (M): 9.8 - Image size: train = 256 x 256, test = 320 x 320 - **Papers:** - An Energy and GPU-Computation Efficient Backbone Network: https://arxiv.org/abs/1904.09730 - CenterMask : Real-Time Anchor-Free Instance Segmentation: https://arxiv.org/abs/1911.06667 - ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476 - MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518 - **Dataset:** ImageNet-1k - **Original:** https://github.com/huggingface/pytorch-image-models ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('ese_vovnet57b.ra4_e3600_r256_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'ese_vovnet57b.ra4_e3600_r256_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 128, 128]) # torch.Size([1, 256, 64, 64]) # torch.Size([1, 512, 32, 32]) # torch.Size([1, 768, 16, 16]) # torch.Size([1, 1024, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'ese_vovnet57b.ra4_e3600_r256_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1024, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @inproceedings{lee2019energy, title = {An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection}, author = {Lee, Youngwan and Hwang, Joong-won and Lee, Sangrok and Bae, Yuseok and Park, Jongyoul}, booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops}, year = {2019} } ``` ```bibtex @article{lee2019centermask, title={CenterMask: Real-Time Anchor-Free Instance Segmentation}, author={Lee, Youngwan and Park, Jongyoul}, booktitle={CVPR}, year={2020} } ``` ```bibtex @inproceedings{wightman2021resnet, title={ResNet strikes back: An improved training procedure in timm}, author={Wightman, Ross and Touvron, Hugo and Jegou, Herve}, booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future} } ``` ```bibtex @article{qin2024mobilenetv4, title={MobileNetV4-Universal Models for the Mobile Ecosystem}, author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others}, journal={arXiv preprint arXiv:2404.10518}, year={2024} } ```