--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for fastvit_sa24.apple_dist_in1k A FastViT image classification model. Trained on ImageNet-1k with distillation by paper authors. Please observe [original license](https://github.com/apple/ml-fastvit/blob/8af5928238cab99c45f64fc3e4e7b1516b8224ba/LICENSE). ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 21.6 - GMACs: 3.8 - Activations (M): 23.9 - Image size: 256 x 256 - **Papers:** - FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization: https://arxiv.org/abs/2303.14189 - **Original:** https://github.com/apple/ml-fastvit - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('fastvit_sa24.apple_dist_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'fastvit_sa24.apple_dist_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 64, 64]) # torch.Size([1, 128, 32, 32]) # torch.Size([1, 256, 16, 16]) # torch.Size([1, 512, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'fastvit_sa24.apple_dist_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @inproceedings{vasufastvit2023, author = {Pavan Kumar Anasosalu Vasu and James Gabriel and Jeff Zhu and Oncel Tuzel and Anurag Ranjan}, title = {FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, year = {2023} } ```