--- tags: - image-classification - timm - transformers library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for inception_v3.tv_in1k A Inception-v3 image classification model. Trained on ImageNet-1k, torchvision weights. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 23.8 - GMACs: 5.7 - Activations (M): 9.0 - Image size: 299 x 299 - **Papers:** - Rethinking the Inception Architecture for Computer Vision: https://arxiv.org/abs/1512.00567 - **Original:** https://github.com/pytorch/vision - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('inception_v3.tv_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'inception_v3.tv_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 147, 147]) # torch.Size([1, 192, 71, 71]) # torch.Size([1, 288, 35, 35]) # torch.Size([1, 768, 17, 17]) # torch.Size([1, 2048, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'inception_v3.tv_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{DBLP:journals/corr/SzegedyVISW15, author = {Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and Zbigniew Wojna}, title = {Rethinking the Inception Architecture for Computer Vision}, journal = {CoRR}, volume = {abs/1512.00567}, year = {2015}, url = {http://arxiv.org/abs/1512.00567}, archivePrefix = {arXiv}, eprint = {1512.00567}, timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```