Add model
Browse files- README.md +127 -0
- config.json +35 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- timm
|
5 |
+
library_name: timm
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
---
|
10 |
+
# Model card for resnest14d.gluon_in1k
|
11 |
+
|
12 |
+
A ResNeSt (ResNet based architecture with Split Attention) image classification model. Trained on ImageNet-1k by paper authors.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
- **Model Type:** Image classification / feature backbone
|
16 |
+
- **Model Stats:**
|
17 |
+
- Params (M): 10.6
|
18 |
+
- GMACs: 2.8
|
19 |
+
- Activations (M): 7.3
|
20 |
+
- Image size: 224 x 224
|
21 |
+
- **Papers:**
|
22 |
+
- ResNeSt: Split-Attention Networks: https://arxiv.org/abs/2004.08955
|
23 |
+
- **Dataset:** ImageNet-1k
|
24 |
+
- **Original:** https://github.com/zhanghang1989/ResNeSt
|
25 |
+
|
26 |
+
## Model Usage
|
27 |
+
### Image Classification
|
28 |
+
```python
|
29 |
+
from urllib.request import urlopen
|
30 |
+
from PIL import Image
|
31 |
+
import timm
|
32 |
+
|
33 |
+
img = Image.open(urlopen(
|
34 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
35 |
+
))
|
36 |
+
|
37 |
+
model = timm.create_model('resnest14d.gluon_in1k', pretrained=True)
|
38 |
+
model = model.eval()
|
39 |
+
|
40 |
+
# get model specific transforms (normalization, resize)
|
41 |
+
data_config = timm.data.resolve_model_data_config(model)
|
42 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
43 |
+
|
44 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
45 |
+
|
46 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
47 |
+
```
|
48 |
+
|
49 |
+
### Feature Map Extraction
|
50 |
+
```python
|
51 |
+
from urllib.request import urlopen
|
52 |
+
from PIL import Image
|
53 |
+
import timm
|
54 |
+
|
55 |
+
img = Image.open(urlopen(
|
56 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
57 |
+
))
|
58 |
+
|
59 |
+
model = timm.create_model(
|
60 |
+
'resnest14d.gluon_in1k',
|
61 |
+
pretrained=True,
|
62 |
+
features_only=True,
|
63 |
+
)
|
64 |
+
model = model.eval()
|
65 |
+
|
66 |
+
# get model specific transforms (normalization, resize)
|
67 |
+
data_config = timm.data.resolve_model_data_config(model)
|
68 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
69 |
+
|
70 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
71 |
+
|
72 |
+
for o in output:
|
73 |
+
# print shape of each feature map in output
|
74 |
+
# e.g.:
|
75 |
+
# torch.Size([1, 64, 112, 112])
|
76 |
+
# torch.Size([1, 256, 56, 56])
|
77 |
+
# torch.Size([1, 512, 28, 28])
|
78 |
+
# torch.Size([1, 1024, 14, 14])
|
79 |
+
# torch.Size([1, 2048, 7, 7])
|
80 |
+
|
81 |
+
print(o.shape)
|
82 |
+
```
|
83 |
+
|
84 |
+
### Image Embeddings
|
85 |
+
```python
|
86 |
+
from urllib.request import urlopen
|
87 |
+
from PIL import Image
|
88 |
+
import timm
|
89 |
+
|
90 |
+
img = Image.open(urlopen(
|
91 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
92 |
+
))
|
93 |
+
|
94 |
+
model = timm.create_model(
|
95 |
+
'resnest14d.gluon_in1k',
|
96 |
+
pretrained=True,
|
97 |
+
num_classes=0, # remove classifier nn.Linear
|
98 |
+
)
|
99 |
+
model = model.eval()
|
100 |
+
|
101 |
+
# get model specific transforms (normalization, resize)
|
102 |
+
data_config = timm.data.resolve_model_data_config(model)
|
103 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
104 |
+
|
105 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
106 |
+
|
107 |
+
# or equivalently (without needing to set num_classes=0)
|
108 |
+
|
109 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
110 |
+
# output is unpooled, a (1, 2048, 7, 7) shaped tensor
|
111 |
+
|
112 |
+
output = model.forward_head(output, pre_logits=True)
|
113 |
+
# output is a (1, num_features) shaped tensor
|
114 |
+
```
|
115 |
+
|
116 |
+
## Model Comparison
|
117 |
+
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|
118 |
+
|
119 |
+
## Citation
|
120 |
+
```bibtex
|
121 |
+
@article{zhang2020resnest,
|
122 |
+
title={ResNeSt: Split-Attention Networks},
|
123 |
+
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
|
124 |
+
journal={arXiv preprint arXiv:2004.08955},
|
125 |
+
year={2020}
|
126 |
+
}
|
127 |
+
```
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "resnest14d",
|
3 |
+
"num_classes": 1000,
|
4 |
+
"num_features": 2048,
|
5 |
+
"pretrained_cfg": {
|
6 |
+
"tag": "gluon_in1k",
|
7 |
+
"custom_load": false,
|
8 |
+
"input_size": [
|
9 |
+
3,
|
10 |
+
224,
|
11 |
+
224
|
12 |
+
],
|
13 |
+
"fixed_input_size": false,
|
14 |
+
"interpolation": "bilinear",
|
15 |
+
"crop_pct": 0.875,
|
16 |
+
"crop_mode": "center",
|
17 |
+
"mean": [
|
18 |
+
0.485,
|
19 |
+
0.456,
|
20 |
+
0.406
|
21 |
+
],
|
22 |
+
"std": [
|
23 |
+
0.229,
|
24 |
+
0.224,
|
25 |
+
0.225
|
26 |
+
],
|
27 |
+
"num_classes": 1000,
|
28 |
+
"pool_size": [
|
29 |
+
7,
|
30 |
+
7
|
31 |
+
],
|
32 |
+
"first_conv": "conv1.0",
|
33 |
+
"classifier": "fc"
|
34 |
+
}
|
35 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e56bef38731fc91873e790d5117c3df60ba281c6fbec6b78d5e14011c0218b8a
|
3 |
+
size 42550126
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e452db9d03692833652f213d12aafc3d1ef7b07fb86ca616100339c1bc80afb4
|
3 |
+
size 42586733
|