update doc about Olive
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
pipeline_tag: text-to-image
|
3 |
license: other
|
4 |
license_name: sai-nc-community
|
5 |
-
license_link: https://huggingface.co/stabilityai/sdxl-turbo/blob/main/LICENSE.TXT
|
6 |
base_model: stabilityai/sdxl-turbo
|
7 |
language:
|
8 |
- en
|
@@ -18,7 +18,10 @@ tags:
|
|
18 |
|
19 |
## Introduction
|
20 |
|
21 |
-
This repository hosts the optimized versions of **SDXL Turbo** to accelerate inference with ONNX Runtime CUDA execution provider.
|
|
|
|
|
|
|
22 |
|
23 |
See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
|
24 |
|
@@ -39,28 +42,17 @@ The Canny control net is converted from [diffusers/controlnet-canny-sdxl-1.0](ht
|
|
39 |
|
40 |
Below is average latency of generating an image of size 512x512 using NVIDIA A100-SXM4-80GB GPU:
|
41 |
|
42 |
-
| Engine | Batch Size | Steps | PyTorch 2.1
|
43 |
|-------------|------------|------ | ----------------|-------------------|
|
44 |
-
| Static | 1 | 1 | 109.4 ms |
|
45 |
-
| Static | 4 | 1 | 247.0 ms |
|
46 |
-
| Static | 1 | 4 | 171.1 ms |
|
47 |
-
| Static | 4 | 4 | 390.5 ms |
|
48 |
|
49 |
|
50 |
Static means the engine is built for the given batch size and image size combination, and CUDA graph is used to speed up.
|
51 |
-
For PyTorch 2.1, the UNet use channel last (NHWC) format, and compile the UNet with mode `reduce-overhead`. See [benchmark script](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/benchmark_controlnet.py) for detail.
|
52 |
-
|
53 |
-
#### Latency for SDXL-Turbo with Canny Control Net
|
54 |
-
|
55 |
-
Below is average latency of generating an image of size 512x512 with canny control net using NVIDIA A100-SXM4-80GB GPU:
|
56 |
-
|
57 |
-
| Engine | Batch Size | Steps | PyTorch 2.1 | ONNX Runtime CUDA |
|
58 |
-
|-------------|------------|------ | ----------------|-------------------|
|
59 |
-
| Static | 1 | 1 | 160.0 ms | 55.3 ms |
|
60 |
-
| Static | 4 | 1 | 314.9 ms | 144.4 ms |
|
61 |
-
| Static | 1 | 4 | 251.9 ms | 134.9 ms |
|
62 |
-
| Static | 4 | 4 | 514.2 ms | 332.6 ms |
|
63 |
|
|
|
64 |
|
65 |
## Usage Example
|
66 |
|
@@ -80,11 +72,6 @@ git lfs install
|
|
80 |
git clone https://huggingface.co/tlwu/sdxl-turbo-onnxruntime
|
81 |
```
|
82 |
|
83 |
-
If you want to try canny control net, get model from a branch:
|
84 |
-
```shell
|
85 |
-
git checkout canny_control_net
|
86 |
-
```
|
87 |
-
|
88 |
3. Launch the docker
|
89 |
```shell
|
90 |
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.10-py3 /bin/bash
|
@@ -118,16 +105,5 @@ python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url
|
|
118 |
python3 demo_txt2img_xl.py \
|
119 |
"starry night over Golden Gate Bridge by van gogh" \
|
120 |
--version xl-turbo \
|
121 |
-
--
|
122 |
-
```
|
123 |
-
|
124 |
-
Generate an image using the canny control net:
|
125 |
-
|
126 |
-
```shell
|
127 |
-
wget https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png
|
128 |
-
|
129 |
-
python3 demo_txt2img_xl.py --controlnet-type canny --controlnet-scale 0.5 --controlnet-image input_image_vermeer.png \
|
130 |
-
--version xl-turbo --height 1024 --width 1024 \
|
131 |
-
--work-dir /workspace/sdxl-turbo-onnxruntime \
|
132 |
-
"portrait of Mona Lisa with mysterious mysterious smile and mountain, river and forest in the background"
|
133 |
```
|
|
|
2 |
pipeline_tag: text-to-image
|
3 |
license: other
|
4 |
license_name: sai-nc-community
|
5 |
+
license_link: https://huggingface.co/stabilityai/sdxl-turbo/blob/main/LICENSE.TXT
|
6 |
base_model: stabilityai/sdxl-turbo
|
7 |
language:
|
8 |
- en
|
|
|
18 |
|
19 |
## Introduction
|
20 |
|
21 |
+
This repository hosts the optimized versions of **SDXL Turbo** to accelerate inference with ONNX Runtime CUDA execution provider. The models are generated by [Olive](https://github.com/microsoft/Olive/tree/main/examples/stable_diffusion) with command like the following:
|
22 |
+
```
|
23 |
+
python stable_diffusion_xl.py --provider cuda --model_id stabilityai/sdxl-turbo --optimize --use_fp16_fixed_vae
|
24 |
+
```
|
25 |
|
26 |
See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
|
27 |
|
|
|
42 |
|
43 |
Below is average latency of generating an image of size 512x512 using NVIDIA A100-SXM4-80GB GPU:
|
44 |
|
45 |
+
| Engine | Batch Size | Steps | PyTorch 2.1 + Diffusers | ONNX Runtime Demo |
|
46 |
|-------------|------------|------ | ----------------|-------------------|
|
47 |
+
| Static | 1 | 1 | 109.4 ms | 49.5 ms |
|
48 |
+
| Static | 4 | 1 | 247.0 ms | 143.1 ms |
|
49 |
+
| Static | 1 | 4 | 171.1 ms | 104.1 ms |
|
50 |
+
| Static | 4 | 4 | 390.5 ms | 271.69 ms |
|
51 |
|
52 |
|
53 |
Static means the engine is built for the given batch size and image size combination, and CUDA graph is used to speed up.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
For PyTorch 2.1, the UNet use channel last (NHWC) format, and compile the UNet with mode `reduce-overhead`. See [benchmark script](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/benchmark_controlnet.py) for detail.
|
56 |
|
57 |
## Usage Example
|
58 |
|
|
|
72 |
git clone https://huggingface.co/tlwu/sdxl-turbo-onnxruntime
|
73 |
```
|
74 |
|
|
|
|
|
|
|
|
|
|
|
75 |
3. Launch the docker
|
76 |
```shell
|
77 |
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.10-py3 /bin/bash
|
|
|
105 |
python3 demo_txt2img_xl.py \
|
106 |
"starry night over Golden Gate Bridge by van gogh" \
|
107 |
--version xl-turbo \
|
108 |
+
--engine-dir /workspace/sdxl-turbo-onnxruntime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
```
|