update doc
Browse files- ORT_CUDA/sdxl-turbo/engine/README.md +0 -103
- README.md +121 -1
ORT_CUDA/sdxl-turbo/engine/README.md
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: openrail++
|
3 |
-
base_model: stabilityai/sdxl-turbo
|
4 |
-
language:
|
5 |
-
- en
|
6 |
-
tags:
|
7 |
-
- stable-diffusion
|
8 |
-
- sdxl
|
9 |
-
- onnxruntime
|
10 |
-
- onnx
|
11 |
-
- text-to-image
|
12 |
-
---
|
13 |
-
|
14 |
-
|
15 |
-
# Stable Diffusion XL 1.0 for ONNX Runtime
|
16 |
-
|
17 |
-
## Introduction
|
18 |
-
|
19 |
-
This repository hosts the optimized versions of **SDXL Turbo** to accelerate inference with ONNX Runtime CUDA execution provider.
|
20 |
-
|
21 |
-
See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
|
22 |
-
|
23 |
-
## Model Description
|
24 |
-
|
25 |
-
- **Developed by:** Stability AI
|
26 |
-
- **Model type:** Diffusion-based text-to-image generative model
|
27 |
-
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/LICENSE.md)
|
28 |
-
- **Model Description:** This is a conversion of the [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo) model for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider.
|
29 |
-
|
30 |
-
The VAE decoder is converted from [sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix). There are slight discrepancies between its output and that of the original VAE, but the decoded images should be [close enough for most purposes](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/discussions/7#64c5c0f8e2e5c94bd04eaa80).
|
31 |
-
|
32 |
-
## Performance Comparison
|
33 |
-
|
34 |
-
#### Latency for 30 steps base and 9 steps refiner
|
35 |
-
|
36 |
-
Below is average latency of generating an image of size 512x512 using NVIDIA A100-SXM4-80GB GPU:
|
37 |
-
|
38 |
-
| Engine | Batch Size | Steps | PyTorch 2.1 | ONNX Runtime CUDA |
|
39 |
-
|-------------|------------|------ | ----------------|-------------------|
|
40 |
-
| Static | 1 | 1 | 109.4 ms | 43.9 ms |
|
41 |
-
| Static | 4 | 1 | 247.0 ms | 121.1 ms |
|
42 |
-
| Static | 1 | 4 | 171.1 ms | 97.5 ms |
|
43 |
-
| Static | 4 | 4 | 390.5 ms | 248.0 ms |
|
44 |
-
|
45 |
-
|
46 |
-
Static means the engine is built for the given batch size and image size combination, and CUDA graph is used to speed up.
|
47 |
-
|
48 |
-
## Usage Example
|
49 |
-
|
50 |
-
Following the [demo instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/README.md#run-demo-with-docker). Example steps:
|
51 |
-
|
52 |
-
0. Install nvidia-docker using these [instructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).
|
53 |
-
|
54 |
-
1. Clone onnxruntime repository.
|
55 |
-
```shell
|
56 |
-
git clone https://github.com/microsoft/onnxruntime
|
57 |
-
cd onnxruntime
|
58 |
-
```
|
59 |
-
|
60 |
-
2. Download the SDXL ONNX files from this repo
|
61 |
-
```shell
|
62 |
-
git lfs install
|
63 |
-
git clone https://huggingface.co/tlwu/sdxl-turbo-onnxruntime
|
64 |
-
```
|
65 |
-
|
66 |
-
3. Launch the docker
|
67 |
-
```shell
|
68 |
-
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.10-py3 /bin/bash
|
69 |
-
```
|
70 |
-
|
71 |
-
4. Build ONNX Runtime from source
|
72 |
-
```shell
|
73 |
-
export CUDACXX=/usr/local/cuda-12.2/bin/nvcc
|
74 |
-
git config --global --add safe.directory '*'
|
75 |
-
sh build.sh --config Release --build_shared_lib --parallel --use_cuda --cuda_version 12.2 \
|
76 |
-
--cuda_home /usr/local/cuda-12.2 --cudnn_home /usr/lib/x86_64-linux-gnu/ --build_wheel --skip_tests \
|
77 |
-
--use_tensorrt --tensorrt_home /usr/src/tensorrt \
|
78 |
-
--cmake_extra_defines onnxruntime_BUILD_UNIT_TESTS=OFF \
|
79 |
-
--cmake_extra_defines CMAKE_CUDA_ARCHITECTURES=80 \
|
80 |
-
--allow_running_as_root
|
81 |
-
python3 -m pip install build/Linux/Release/dist/onnxruntime_gpu-*-cp310-cp310-linux_x86_64.whl --force-reinstall
|
82 |
-
```
|
83 |
-
|
84 |
-
If the GPU is not A100, change CMAKE_CUDA_ARCHITECTURES=80 in the command line according to the GPU compute capacity (like 89 for RTX 4090, or 86 for RTX 3090). If your machine has less than 64GB memory, replace --parallel by --parallel 4 --nvcc_threads 1 to avoid out of memory.
|
85 |
-
|
86 |
-
5. Install libraries and requirements
|
87 |
-
```shell
|
88 |
-
python3 -m pip install --upgrade pip
|
89 |
-
cd /workspace/onnxruntime/python/tools/transformers/models/stable_diffusion
|
90 |
-
python3 -m pip install -r requirements-cuda12.txt
|
91 |
-
python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com
|
92 |
-
```
|
93 |
-
|
94 |
-
6. Perform ONNX Runtime optimized inference
|
95 |
-
```shell
|
96 |
-
python3 demo_txt2img_xl.py \
|
97 |
-
"starry night over Golden Gate Bridge by van gogh" \
|
98 |
-
--version xl-turbo \
|
99 |
-
--width 1024 \
|
100 |
-
--height 1024 \
|
101 |
-
--denoising-steps 8 \
|
102 |
-
--work-dir /workspace/sdxl-turbo-onnxruntime
|
103 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,3 +1,123 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: openrail++
|
3 |
+
base_model: stabilityai/sdxl-turbo
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
tags:
|
7 |
+
- stable-diffusion
|
8 |
+
- sdxl
|
9 |
+
- onnxruntime
|
10 |
+
- onnx
|
11 |
+
- text-to-image
|
12 |
---
|
13 |
+
|
14 |
+
|
15 |
+
# Stable Diffusion XL 1.0 for ONNX Runtime
|
16 |
+
|
17 |
+
## Introduction
|
18 |
+
|
19 |
+
This repository hosts the optimized versions of **SDXL Turbo** to accelerate inference with ONNX Runtime CUDA execution provider.
|
20 |
+
|
21 |
+
See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
|
22 |
+
|
23 |
+
## Model Description
|
24 |
+
|
25 |
+
- **Developed by:** Stability AI
|
26 |
+
- **Model type:** Diffusion-based text-to-image generative model
|
27 |
+
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/LICENSE.md)
|
28 |
+
- **Model Description:** This is a conversion of the [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo) model for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider.
|
29 |
+
|
30 |
+
The VAE decoder is converted from [sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix). There are slight discrepancies between its output and that of the original VAE, but the decoded images should be [close enough for most purposes](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/discussions/7#64c5c0f8e2e5c94bd04eaa80).
|
31 |
+
|
32 |
+
The Canny control net is converted from [diffusers/controlnet-canny-sdxl-1.0](https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0).
|
33 |
+
|
34 |
+
## Performance Comparison
|
35 |
+
|
36 |
+
#### Latency for SDXL-Turbo
|
37 |
+
|
38 |
+
Below is average latency of generating an image of size 512x512 using NVIDIA A100-SXM4-80GB GPU:
|
39 |
+
|
40 |
+
| Engine | Batch Size | Steps | PyTorch 2.1 | ONNX Runtime CUDA |
|
41 |
+
|-------------|------------|------ | ----------------|-------------------|
|
42 |
+
| Static | 1 | 1 | 109.4 ms | 43.9 ms |
|
43 |
+
| Static | 4 | 1 | 247.0 ms | 121.1 ms |
|
44 |
+
| Static | 1 | 4 | 171.1 ms | 97.5 ms |
|
45 |
+
| Static | 4 | 4 | 390.5 ms | 248.0 ms |
|
46 |
+
|
47 |
+
|
48 |
+
Static means the engine is built for the given batch size and image size combination, and CUDA graph is used to speed up.
|
49 |
+
|
50 |
+
|
51 |
+
#### Latency for SDXL-Turbo with Canny Control Net
|
52 |
+
|
53 |
+
Below is average latency of generating an image of size 512x512 with canny control net using NVIDIA A100-SXM4-80GB GPU:
|
54 |
+
|
55 |
+
| Engine | Batch Size | Steps | PyTorch 2.1 | ONNX Runtime CUDA |
|
56 |
+
|-------------|------------|------ | ----------------|-------------------|
|
57 |
+
| Static | 1 | 1 | 160.0 ms | 49.3 ms |
|
58 |
+
| Static | 4 | 1 | 314.9 ms | 135.3 ms |
|
59 |
+
| Static | 1 | 4 | 251.9 ms | 123.3 ms |
|
60 |
+
| Static | 4 | 4 | 514.2 ms | 303.3 ms |
|
61 |
+
|
62 |
+
|
63 |
+
## Usage Example
|
64 |
+
|
65 |
+
Following the [demo instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/README.md#run-demo-with-docker). Example steps:
|
66 |
+
|
67 |
+
0. Install nvidia-docker using these [instructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).
|
68 |
+
|
69 |
+
1. Clone onnxruntime repository.
|
70 |
+
```shell
|
71 |
+
git clone https://github.com/microsoft/onnxruntime
|
72 |
+
cd onnxruntime
|
73 |
+
```
|
74 |
+
|
75 |
+
If you want to try canny control net,
|
76 |
+
```shell
|
77 |
+
git chehckout canny_control_net
|
78 |
+
```
|
79 |
+
|
80 |
+
2. Download the SDXL ONNX files from this repo
|
81 |
+
```shell
|
82 |
+
git lfs install
|
83 |
+
git clone https://huggingface.co/tlwu/sdxl-turbo-onnxruntime
|
84 |
+
```
|
85 |
+
|
86 |
+
3. Launch the docker
|
87 |
+
```shell
|
88 |
+
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.10-py3 /bin/bash
|
89 |
+
```
|
90 |
+
|
91 |
+
4. Build ONNX Runtime from source
|
92 |
+
```shell
|
93 |
+
export CUDACXX=/usr/local/cuda-12.2/bin/nvcc
|
94 |
+
git config --global --add safe.directory '*'
|
95 |
+
sh build.sh --config Release --build_shared_lib --parallel --use_cuda --cuda_version 12.2 \
|
96 |
+
--cuda_home /usr/local/cuda-12.2 --cudnn_home /usr/lib/x86_64-linux-gnu/ --build_wheel --skip_tests \
|
97 |
+
--use_tensorrt --tensorrt_home /usr/src/tensorrt \
|
98 |
+
--cmake_extra_defines onnxruntime_BUILD_UNIT_TESTS=OFF \
|
99 |
+
--cmake_extra_defines CMAKE_CUDA_ARCHITECTURES=80 \
|
100 |
+
--allow_running_as_root
|
101 |
+
python3 -m pip install build/Linux/Release/dist/onnxruntime_gpu-*-cp310-cp310-linux_x86_64.whl --force-reinstall
|
102 |
+
```
|
103 |
+
|
104 |
+
If the GPU is not A100, change CMAKE_CUDA_ARCHITECTURES=80 in the command line according to the GPU compute capacity (like 89 for RTX 4090, or 86 for RTX 3090). If your machine has less than 64GB memory, replace --parallel by --parallel 4 --nvcc_threads 1 to avoid out of memory.
|
105 |
+
|
106 |
+
5. Install libraries and requirements
|
107 |
+
```shell
|
108 |
+
python3 -m pip install --upgrade pip
|
109 |
+
cd /workspace/onnxruntime/python/tools/transformers/models/stable_diffusion
|
110 |
+
python3 -m pip install -r requirements-cuda12.txt
|
111 |
+
python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com
|
112 |
+
```
|
113 |
+
|
114 |
+
6. Perform ONNX Runtime optimized inference
|
115 |
+
```shell
|
116 |
+
python3 demo_txt2img_xl.py \
|
117 |
+
"starry night over Golden Gate Bridge by van gogh" \
|
118 |
+
--version xl-turbo \
|
119 |
+
--width 1024 \
|
120 |
+
--height 1024 \
|
121 |
+
--denoising-steps 8 \
|
122 |
+
--work-dir /workspace/sdxl-turbo-onnxruntime
|
123 |
+
```
|