---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:160436
- loss:DenoisingAutoEncoderLoss
base_model: google-bert/bert-base-uncased
widget:
- source_sentence: how do i make evolution check and notify new emails , without keeping
main ui open ?
sentences:
- ppas be removed?
- how set serve as a samba primary controller pam modules to authenticate against?
- how do make check and notify new emails keeping
- source_sentence: setting http proxy in awesome wm
sentences:
- on 10.04 on p series?
- setting http proxy awesome wm
- mean package is "set to installed?
- source_sentence: what is ubuntu advantage ?
sentences:
- is advantage?
- how turn calling on f1
- is utnubu?
- source_sentence: is there a way to check hardware integrity ?
sentences:
- is there a way to hardware integrity?
- to change key ctrl
- software is to tv card
- source_sentence: how to fix ssl error from python apps ( urllib ) when behind https
proxy ?
sentences:
- windows started with archive
- upstart
- how to ssl from python () proxy
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
emissions: 74.02946721860093
energy_consumed: 0.19045301341027557
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.64
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
results:
- task:
type: reranking
name: Reranking
dataset:
name: AskUbuntu dev
type: AskUbuntu-dev
metrics:
- type: map
value: 0.5058158414596666
name: Map
- type: mrr@10
value: 0.6325571254142682
name: Mrr@10
- type: ndcg@10
value: 0.5529143206799554
name: Ndcg@10
- task:
type: reranking
name: Reranking
dataset:
name: AskUbuntu test
type: AskUbuntu-test
metrics:
- type: map
value: 0.5826205294809574
name: Map
- type: mrr@10
value: 0.7237319322514852
name: Mrr@10
- type: ndcg@10
value: 0.6303658219971641
name: Ndcg@10
---
# SentenceTransformer based on google-bert/bert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
- **Maximum Sequence Length:** 75 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-tsdae-askubuntu")
# Run inference
sentences = [
'how to fix ssl error from python apps ( urllib ) when behind https proxy ?',
'how to ssl from python () proxy',
'upstart',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Reranking
* Datasets: `AskUbuntu-dev` and `AskUbuntu-test`
* Evaluated with [RerankingEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.RerankingEvaluator)
| Metric | AskUbuntu-dev | AskUbuntu-test |
|:--------|:--------------|:---------------|
| **map** | **0.5058** | **0.5826** |
| mrr@10 | 0.6326 | 0.7237 |
| ndcg@10 | 0.5529 | 0.6304 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 160,436 training samples
* Columns: text
and noisy
* Approximate statistics based on the first 1000 samples:
| | text | noisy |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
how to get the `` your battery is broken '' message to go away ?
| to get the is broken go away?
|
| how can i set the software center to install software for non-root users ?
| how can i the center install non-root users
|
| what are some alternatives to upgrading without using the standard upgrade system ?
| what are alternatives to using standard system?
|
* Loss: [DenoisingAutoEncoderLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `learning_rate`: 3e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters