File size: 36,341 Bytes
ed45995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67a5e14
ed45995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67a5e14
ed45995
 
 
4ebdc6e
 
ed45995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e440089
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1M<n<10M
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
datasets:
- sentence-transformers/gooaq
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: 11 is what of 8?
  sentences:
  - '*RARE* CANDY AXE AND RED NOSED RAIDER IS BACK - FORTNITE ITEM SHOP 8TH DECEMBER
    2019.'
  - 'Convert fraction (ratio) 8 / 11 Answer: 72.727272727273%'
  - Old-age pensions are not included in taxable income under the personal income
    tax.
- source_sentence: is 50 shades of grey on prime?
  sentences:
  - 'Amazon.com: Watch Fifty Shades of Grey. Prime Video.'
  - 'How much is 22 out of 100 written as a percentage? Convert fraction (ratio) 22
    / 100 Answer: 22%'
  - Petco ferrets are neutered and as social animals, they enjoy each other's company.
- source_sentence: 20 of what is 18?
  sentences:
  - '20 percent (calculated percentage %) of what number equals 18? Answer: 90.'
  - There are 3.35 x 1019 H2O molecules in a 1 mg snowflake.
  - There are 104 total Power Moons and 100 Purple Coins in the Mushroom Kingdom.
- source_sentence: 63 up itv when is it on?
  sentences:
  - Mark Twain Quotes If you tell the truth, you don't have to remember anything.
  - 63 Up is on ITV for three consecutive nights, Tuesday 4  Thursday 6 June, at
    9pm.
  - In a language, the smallest units of meaning are. Morphemes.
- source_sentence: what is ikit in tagalog?
  sentences:
  - 'Definition: aunt. the sister of one''s father or mother; the wife of one''s uncle
    (n.)'
  - 'How much is 12 out of 29 written as a percentage? Convert fraction (ratio) 12
    / 29 Answer: 41.379310344828%'
  - Iberia offers Wi-Fi on all long-haul aircraft so that you can stay connected using
    your own devices.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 636.2415070661234
  energy_consumed: 1.636836206312608
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 4.514
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on GooAQ Question-Answer tuples
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: gooaq dev
      type: gooaq-dev
    metrics:
    - type: cosine_accuracy@1
      value: 0.7198
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.884
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9305
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9709
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7198
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29466666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1861
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09709000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7198
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.884
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9305
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9709
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8490972112228806
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8095713888888812
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8111457785591406
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.7073
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.877
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9244
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9669
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.7073
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2923333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.18488000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09669000000000003
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.7073
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.877
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.9244
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9669
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8412144933973646
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8004067857142795
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8022667466578848
      name: Dot Map@100
---

# MPNet base trained on GooAQ Question-Answer tuples

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

This model was trained using the [train_script.py](train_script.py) code.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-gooaq")
# Run inference
sentences = [
    '11 is what of 8?',
    'Convert fraction (ratio) 8 / 11 Answer: 72.727272727273%',
    'Old-age pensions are not included in taxable income under the personal income tax.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `gooaq-dev`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7198     |
| cosine_accuracy@3   | 0.884      |
| cosine_accuracy@5   | 0.9305     |
| cosine_accuracy@10  | 0.9709     |
| cosine_precision@1  | 0.7198     |
| cosine_precision@3  | 0.2947     |
| cosine_precision@5  | 0.1861     |
| cosine_precision@10 | 0.0971     |
| cosine_recall@1     | 0.7198     |
| cosine_recall@3     | 0.884      |
| cosine_recall@5     | 0.9305     |
| cosine_recall@10    | 0.9709     |
| cosine_ndcg@10      | 0.8491     |
| cosine_mrr@10       | 0.8096     |
| **cosine_map@100**  | **0.8111** |
| dot_accuracy@1      | 0.7073     |
| dot_accuracy@3      | 0.877      |
| dot_accuracy@5      | 0.9244     |
| dot_accuracy@10     | 0.9669     |
| dot_precision@1     | 0.7073     |
| dot_precision@3     | 0.2923     |
| dot_precision@5     | 0.1849     |
| dot_precision@10    | 0.0967     |
| dot_recall@1        | 0.7073     |
| dot_recall@3        | 0.877      |
| dot_recall@5        | 0.9244     |
| dot_recall@10       | 0.9669     |
| dot_ndcg@10         | 0.8412     |
| dot_mrr@10          | 0.8004     |
| dot_map@100         | 0.8023     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/gooaq

* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,002,496 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.89 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 60.37 tokens</li><li>max: 147 tokens</li></ul> |
* Samples:
  | question                                       | answer                                                                                                                                                                                                                                                                                                              |
  |:-----------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>biotechnology is best defined as?</code> | <code>Biotechnology is best defined as_______________? The science that involves using living organisms to produce needed materials. Which of the following tools of biotechnology, to do investigation, is used when trying crime?</code>                                                                          |
  | <code>how to open xye file?</code>             | <code>Firstly, use File then Open and make sure that you can see All Files (*. *) and not just Excel files (the default option!) in the folder containing the *. xye file: Select the file you wish to open and Excel will bring up a wizard menu for importing plain text data into Excel (as shown below).</code> |
  | <code>how much does california spend?</code>   | <code>Estimated 2016 expenditures The total estimated government spending in California in fiscal year 2016 was $265.9 billion. Per-capita figures are calculated by taking the state's total spending and dividing by the number of state residents according to United States Census Bureau estimates.</code>     |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### sentence-transformers/gooaq

* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 10,000 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.86 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.82 tokens</li><li>max: 166 tokens</li></ul> |
* Samples:
  | question                                                                        | answer                                                                                                                                                                                                                                                                                                                                                         |
  |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how to open nx file?</code>                                               | <code>['Click File > Open. The File Open dialog box opens.', 'Select NX File (*. prt) in the Type box. ... ', 'Select an NX . ... ', 'Select Import in the File Open dialog box. ... ', 'If you do not want to retain the import profile in use, select an import profile from the Profile list. ... ', 'Click OK in the Import New Model dialog box.']</code> |
  | <code>how to recover deleted photos from blackberry priv?</code>                | <code>['Run Android Data Recovery. ... ', 'Enable USB Debugging Mode. ... ', 'Scan Your BlackBerry PRIV to Find Deleted Photos. ... ', 'Recover Deleted Photos from BlackBerry PRIV.']</code>                                                                                                                                                                  |
  | <code>which subatomic particles are found within the nucleus of an atom?</code> | <code>In the middle of every atom is the nucleus. The nucleus contains two types of subatomic particles, protons and neutrons. The protons have a positive electrical charge and the neutrons have no electrical charge. A third type of subatomic particle, electrons, move around the nucleus.</code>                                                        |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss | loss   | gooaq-dev_cosine_map@100 |
|:------:|:-----:|:-------------:|:------:|:------------------------:|
| 0      | 0     | -             | -      | 0.1379                   |
| 0.0000 | 1     | 3.6452        | -      | -                        |
| 0.0053 | 250   | 2.4418        | -      | -                        |
| 0.0107 | 500   | 0.373         | -      | -                        |
| 0.0160 | 750   | 0.183         | -      | -                        |
| 0.0213 | 1000  | 0.1286        | 0.0805 | 0.6796                   |
| 0.0266 | 1250  | 0.1099        | -      | -                        |
| 0.0320 | 1500  | 0.091         | -      | -                        |
| 0.0373 | 1750  | 0.0768        | -      | -                        |
| 0.0426 | 2000  | 0.0665        | 0.0526 | 0.7162                   |
| 0.0480 | 2250  | 0.0659        | -      | -                        |
| 0.0533 | 2500  | 0.0602        | -      | -                        |
| 0.0586 | 2750  | 0.0548        | -      | -                        |
| 0.0639 | 3000  | 0.0543        | 0.0426 | 0.7328                   |
| 0.0693 | 3250  | 0.0523        | -      | -                        |
| 0.0746 | 3500  | 0.0494        | -      | -                        |
| 0.0799 | 3750  | 0.0468        | -      | -                        |
| 0.0853 | 4000  | 0.0494        | 0.0362 | 0.7450                   |
| 0.0906 | 4250  | 0.048         | -      | -                        |
| 0.0959 | 4500  | 0.0442        | -      | -                        |
| 0.1012 | 4750  | 0.0442        | -      | -                        |
| 0.1066 | 5000  | 0.0408        | 0.0332 | 0.7519                   |
| 0.1119 | 5250  | 0.0396        | -      | -                        |
| 0.1172 | 5500  | 0.0379        | -      | -                        |
| 0.1226 | 5750  | 0.0392        | -      | -                        |
| 0.1279 | 6000  | 0.0395        | 0.0300 | 0.7505                   |
| 0.1332 | 6250  | 0.0349        | -      | -                        |
| 0.1386 | 6500  | 0.0383        | -      | -                        |
| 0.1439 | 6750  | 0.0335        | -      | -                        |
| 0.1492 | 7000  | 0.0323        | 0.0253 | 0.7624                   |
| 0.1545 | 7250  | 0.0342        | -      | -                        |
| 0.1599 | 7500  | 0.0292        | -      | -                        |
| 0.1652 | 7750  | 0.0309        | -      | -                        |
| 0.1705 | 8000  | 0.0335        | 0.0249 | 0.7631                   |
| 0.1759 | 8250  | 0.0304        | -      | -                        |
| 0.1812 | 8500  | 0.0318        | -      | -                        |
| 0.1865 | 8750  | 0.0271        | -      | -                        |
| 0.1918 | 9000  | 0.029         | 0.0230 | 0.7615                   |
| 0.1972 | 9250  | 0.0309        | -      | -                        |
| 0.2025 | 9500  | 0.0305        | -      | -                        |
| 0.2078 | 9750  | 0.0237        | -      | -                        |
| 0.2132 | 10000 | 0.0274        | 0.0220 | 0.7667                   |
| 0.2185 | 10250 | 0.0248        | -      | -                        |
| 0.2238 | 10500 | 0.0249        | -      | -                        |
| 0.2291 | 10750 | 0.0272        | -      | -                        |
| 0.2345 | 11000 | 0.0289        | 0.0230 | 0.7664                   |
| 0.2398 | 11250 | 0.027         | -      | -                        |
| 0.2451 | 11500 | 0.0259        | -      | -                        |
| 0.2505 | 11750 | 0.0237        | -      | -                        |
| 0.2558 | 12000 | 0.0245        | 0.0220 | 0.7694                   |
| 0.2611 | 12250 | 0.0251        | -      | -                        |
| 0.2664 | 12500 | 0.0243        | -      | -                        |
| 0.2718 | 12750 | 0.0229        | -      | -                        |
| 0.2771 | 13000 | 0.0273        | 0.0201 | 0.7725                   |
| 0.2824 | 13250 | 0.0244        | -      | -                        |
| 0.2878 | 13500 | 0.0248        | -      | -                        |
| 0.2931 | 13750 | 0.0255        | -      | -                        |
| 0.2984 | 14000 | 0.0244        | 0.0192 | 0.7729                   |
| 0.3037 | 14250 | 0.0242        | -      | -                        |
| 0.3091 | 14500 | 0.0235        | -      | -                        |
| 0.3144 | 14750 | 0.0231        | -      | -                        |
| 0.3197 | 15000 | 0.0228        | 0.0190 | 0.7823                   |
| 0.3251 | 15250 | 0.0229        | -      | -                        |
| 0.3304 | 15500 | 0.0224        | -      | -                        |
| 0.3357 | 15750 | 0.0216        | -      | -                        |
| 0.3410 | 16000 | 0.0218        | 0.0186 | 0.7787                   |
| 0.3464 | 16250 | 0.022         | -      | -                        |
| 0.3517 | 16500 | 0.0233        | -      | -                        |
| 0.3570 | 16750 | 0.0216        | -      | -                        |
| 0.3624 | 17000 | 0.0226        | 0.0169 | 0.7862                   |
| 0.3677 | 17250 | 0.0215        | -      | -                        |
| 0.3730 | 17500 | 0.0212        | -      | -                        |
| 0.3784 | 17750 | 0.0178        | -      | -                        |
| 0.3837 | 18000 | 0.0217        | 0.0161 | 0.7813                   |
| 0.3890 | 18250 | 0.0217        | -      | -                        |
| 0.3943 | 18500 | 0.0191        | -      | -                        |
| 0.3997 | 18750 | 0.0216        | -      | -                        |
| 0.4050 | 19000 | 0.022         | 0.0157 | 0.7868                   |
| 0.4103 | 19250 | 0.0223        | -      | -                        |
| 0.4157 | 19500 | 0.021         | -      | -                        |
| 0.4210 | 19750 | 0.0176        | -      | -                        |
| 0.4263 | 20000 | 0.021         | 0.0162 | 0.7873                   |
| 0.4316 | 20250 | 0.0206        | -      | -                        |
| 0.4370 | 20500 | 0.0196        | -      | -                        |
| 0.4423 | 20750 | 0.0186        | -      | -                        |
| 0.4476 | 21000 | 0.0197        | 0.0158 | 0.7907                   |
| 0.4530 | 21250 | 0.0156        | -      | -                        |
| 0.4583 | 21500 | 0.0178        | -      | -                        |
| 0.4636 | 21750 | 0.0175        | -      | -                        |
| 0.4689 | 22000 | 0.0187        | 0.0151 | 0.7937                   |
| 0.4743 | 22250 | 0.0182        | -      | -                        |
| 0.4796 | 22500 | 0.0185        | -      | -                        |
| 0.4849 | 22750 | 0.0217        | -      | -                        |
| 0.4903 | 23000 | 0.0179        | 0.0156 | 0.7937                   |
| 0.4956 | 23250 | 0.0193        | -      | -                        |
| 0.5009 | 23500 | 0.015         | -      | -                        |
| 0.5062 | 23750 | 0.0181        | -      | -                        |
| 0.5116 | 24000 | 0.0173        | 0.0150 | 0.7924                   |
| 0.5169 | 24250 | 0.0177        | -      | -                        |
| 0.5222 | 24500 | 0.0183        | -      | -                        |
| 0.5276 | 24750 | 0.0171        | -      | -                        |
| 0.5329 | 25000 | 0.0185        | 0.0140 | 0.7955                   |
| 0.5382 | 25250 | 0.0178        | -      | -                        |
| 0.5435 | 25500 | 0.015         | -      | -                        |
| 0.5489 | 25750 | 0.017         | -      | -                        |
| 0.5542 | 26000 | 0.0171        | 0.0139 | 0.7931                   |
| 0.5595 | 26250 | 0.0164        | -      | -                        |
| 0.5649 | 26500 | 0.0175        | -      | -                        |
| 0.5702 | 26750 | 0.0175        | -      | -                        |
| 0.5755 | 27000 | 0.0163        | 0.0133 | 0.7954                   |
| 0.5809 | 27250 | 0.0179        | -      | -                        |
| 0.5862 | 27500 | 0.016         | -      | -                        |
| 0.5915 | 27750 | 0.0155        | -      | -                        |
| 0.5968 | 28000 | 0.0162        | 0.0138 | 0.7979                   |
| 0.6022 | 28250 | 0.0164        | -      | -                        |
| 0.6075 | 28500 | 0.0148        | -      | -                        |
| 0.6128 | 28750 | 0.0152        | -      | -                        |
| 0.6182 | 29000 | 0.0166        | 0.0134 | 0.7987                   |
| 0.6235 | 29250 | 0.0159        | -      | -                        |
| 0.6288 | 29500 | 0.0168        | -      | -                        |
| 0.6341 | 29750 | 0.0187        | -      | -                        |
| 0.6395 | 30000 | 0.017         | 0.0137 | 0.7980                   |
| 0.6448 | 30250 | 0.0168        | -      | -                        |
| 0.6501 | 30500 | 0.0149        | -      | -                        |
| 0.6555 | 30750 | 0.0159        | -      | -                        |
| 0.6608 | 31000 | 0.0149        | 0.0131 | 0.8017                   |
| 0.6661 | 31250 | 0.0149        | -      | -                        |
| 0.6714 | 31500 | 0.0147        | -      | -                        |
| 0.6768 | 31750 | 0.0157        | -      | -                        |
| 0.6821 | 32000 | 0.0151        | 0.0125 | 0.8011                   |
| 0.6874 | 32250 | 0.015         | -      | -                        |
| 0.6928 | 32500 | 0.0157        | -      | -                        |
| 0.6981 | 32750 | 0.0153        | -      | -                        |
| 0.7034 | 33000 | 0.0141        | 0.0123 | 0.8012                   |
| 0.7087 | 33250 | 0.0143        | -      | -                        |
| 0.7141 | 33500 | 0.0121        | -      | -                        |
| 0.7194 | 33750 | 0.0164        | -      | -                        |
| 0.7247 | 34000 | 0.014         | 0.0121 | 0.8014                   |
| 0.7301 | 34250 | 0.0147        | -      | -                        |
| 0.7354 | 34500 | 0.0149        | -      | -                        |
| 0.7407 | 34750 | 0.014         | -      | -                        |
| 0.7460 | 35000 | 0.0156        | 0.0117 | 0.8022                   |
| 0.7514 | 35250 | 0.0153        | -      | -                        |
| 0.7567 | 35500 | 0.0146        | -      | -                        |
| 0.7620 | 35750 | 0.0144        | -      | -                        |
| 0.7674 | 36000 | 0.0139        | 0.0111 | 0.8035                   |
| 0.7727 | 36250 | 0.0134        | -      | -                        |
| 0.7780 | 36500 | 0.013         | -      | -                        |
| 0.7833 | 36750 | 0.0156        | -      | -                        |
| 0.7887 | 37000 | 0.0144        | 0.0108 | 0.8048                   |
| 0.7940 | 37250 | 0.0133        | -      | -                        |
| 0.7993 | 37500 | 0.0154        | -      | -                        |
| 0.8047 | 37750 | 0.0132        | -      | -                        |
| 0.8100 | 38000 | 0.013         | 0.0108 | 0.8063                   |
| 0.8153 | 38250 | 0.0126        | -      | -                        |
| 0.8207 | 38500 | 0.0135        | -      | -                        |
| 0.8260 | 38750 | 0.014         | -      | -                        |
| 0.8313 | 39000 | 0.013         | 0.0109 | 0.8086                   |
| 0.8366 | 39250 | 0.0136        | -      | -                        |
| 0.8420 | 39500 | 0.0141        | -      | -                        |
| 0.8473 | 39750 | 0.0155        | -      | -                        |
| 0.8526 | 40000 | 0.0153        | 0.0106 | 0.8075                   |
| 0.8580 | 40250 | 0.0131        | -      | -                        |
| 0.8633 | 40500 | 0.0128        | -      | -                        |
| 0.8686 | 40750 | 0.013         | -      | -                        |
| 0.8739 | 41000 | 0.0133        | 0.0109 | 0.8060                   |
| 0.8793 | 41250 | 0.0119        | -      | -                        |
| 0.8846 | 41500 | 0.0144        | -      | -                        |
| 0.8899 | 41750 | 0.0142        | -      | -                        |
| 0.8953 | 42000 | 0.0138        | 0.0105 | 0.8083                   |
| 0.9006 | 42250 | 0.014         | -      | -                        |
| 0.9059 | 42500 | 0.0134        | -      | -                        |
| 0.9112 | 42750 | 0.0134        | -      | -                        |
| 0.9166 | 43000 | 0.0124        | 0.0106 | 0.8113                   |
| 0.9219 | 43250 | 0.0122        | -      | -                        |
| 0.9272 | 43500 | 0.0126        | -      | -                        |
| 0.9326 | 43750 | 0.0121        | -      | -                        |
| 0.9379 | 44000 | 0.0137        | 0.0103 | 0.8105                   |
| 0.9432 | 44250 | 0.0132        | -      | -                        |
| 0.9485 | 44500 | 0.012         | -      | -                        |
| 0.9539 | 44750 | 0.0136        | -      | -                        |
| 0.9592 | 45000 | 0.0133        | 0.0104 | 0.8112                   |
| 0.9645 | 45250 | 0.0118        | -      | -                        |
| 0.9699 | 45500 | 0.0132        | -      | -                        |
| 0.9752 | 45750 | 0.0118        | -      | -                        |
| 0.9805 | 46000 | 0.012         | 0.0102 | 0.8104                   |
| 0.9858 | 46250 | 0.0127        | -      | -                        |
| 0.9912 | 46500 | 0.0134        | -      | -                        |
| 0.9965 | 46750 | 0.0121        | -      | -                        |
| 1.0    | 46914 | -             | -      | 0.8111                   |

</details>

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 1.637 kWh
- **Carbon Emitted**: 0.636 kg of CO2
- **Hours Used**: 4.514 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->