tomaarsen HF staff commited on
Commit
89dbcf8
·
verified ·
1 Parent(s): fa2052a

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:50000
11
+ - loss:CachedGISTEmbedLoss
12
+ base_model: microsoft/mpnet-base
13
+ widget:
14
+ - source_sentence: what does the accounts receivable turnover measure?
15
+ sentences:
16
+ - The accounts receivable turnover ratio is an accounting measure used to quantify
17
+ a company's effectiveness in collecting its receivables or money owed by clients.
18
+ The ratio shows how well a company uses and manages the credit it extends to customers
19
+ and how quickly that short-term debt is collected or is paid.
20
+ - Capital budgeting, and investment appraisal, is the planning process used to determine
21
+ whether an organization's long term investments such as new machinery, replacement
22
+ of machinery, new plants, new products, and research development projects are
23
+ worth the funding of cash through the firm's capitalization structure ( ...
24
+ - The accounts receivable turnover ratio is an accounting measure used to quantify
25
+ a company's effectiveness in collecting its receivables or money owed by clients.
26
+ The ratio shows how well a company uses and manages the credit it extends to customers
27
+ and how quickly that short-term debt is collected or is paid.
28
+ - source_sentence: does gabapentin cause liver problems?
29
+ sentences:
30
+ - Gabapentin has no appreciable liver metabolism, yet, suspected cases of gabapentin-induced
31
+ hepatotoxicity have been reported. Per literature review, two cases of possible
32
+ gabapentin-induced liver injury have been reported.
33
+ - Strongholds are a type of story mission which only unlocks after enough progression
34
+ through the game. There are three Stronghold's during the first section of progression
35
+ through The Division 2. You'll need to complete the first two and have reached
36
+ level 30 before being able to unlock the final Stronghold.
37
+ - The most-common side effects attributed to Gabapentin include mild sedation, ataxia,
38
+ and occasional diarrhea. Sedation can be minimized by tapering from a smaller
39
+ starting dose to the desired dose. When treating seizures, it is ideal to wean
40
+ off the drug to reduce the risk of withdrawal seizures.
41
+ - source_sentence: how long should you wait to give blood after eating?
42
+ sentences:
43
+ - Until the bleeding has stopped it is natural to taste blood or to see traces of
44
+ blood in your saliva. You may stop using gauze after the flow stops – usually
45
+ around 8 hours after surgery.
46
+ - Before donation The first and most important rule—never donate blood on an empty
47
+ stomach. “Eat a wholesome meal about 2-3 hours before donating to keep your blood
48
+ sugar stable," says Dr Chaturvedi. The timing of the meal is important too. You
49
+ need to allow the food to be digested properly before the blood is drawn.
50
+ - While grid computing involves virtualizing computing resources to store massive
51
+ amounts of data, whereas cloud computing is where an application doesn't access
52
+ resources directly, rather it accesses them through a service over the internet.
53
+ ...
54
+ - source_sentence: what is the difference between chicken francese and chicken marsala?
55
+ sentences:
56
+ - Chicken is the species name, equivalent to our “human.” Rooster is an adult male,
57
+ equivalent to “man.” Hen is an adult female, equivalent to “woman.” Cockerel is
58
+ a juvenile male, equivalent to “boy/young man.”
59
+ - What is 99 kg in pounds? - 99 kg is equal to 218.26 pounds.
60
+ - The difference between the two is for Francese, the chicken breast is first dipped
61
+ in flour, then into a beaten egg mixture, before being cooked. For piccata, the
62
+ chicken is first dipped in egg and then in flour. Both are then simmered in a
63
+ lemony butter sauce, but the piccata sauce includes capers.”
64
+ - source_sentence: what energy is released when coal is burned?
65
+ sentences:
66
+ - When coal is burned, it reacts with the oxygen in the air. This chemical reaction
67
+ converts the stored solar energy into thermal energy, which is released as heat.
68
+ But it also produces carbon dioxide and methane.
69
+ - When coal is burned it releases a number of airborne toxins and pollutants. They
70
+ include mercury, lead, sulfur dioxide, nitrogen oxides, particulates, and various
71
+ other heavy metals.
72
+ - Squad Building Challenges allow you to exchange sets of players for coins, packs,
73
+ and special items in FUT 20. Each of these challenges come with specific requirements,
74
+ such as including players from certain teams. ... Live SBCs are time-limited challenges
75
+ which often give out unique, high-rated versions of players.
76
+ datasets:
77
+ - tomaarsen/gooaq-hard-negatives
78
+ pipeline_tag: sentence-similarity
79
+ library_name: sentence-transformers
80
+ metrics:
81
+ - cosine_accuracy@1
82
+ - cosine_accuracy@3
83
+ - cosine_accuracy@5
84
+ - cosine_accuracy@10
85
+ - cosine_precision@1
86
+ - cosine_precision@3
87
+ - cosine_precision@5
88
+ - cosine_precision@10
89
+ - cosine_recall@1
90
+ - cosine_recall@3
91
+ - cosine_recall@5
92
+ - cosine_recall@10
93
+ - cosine_ndcg@10
94
+ - cosine_mrr@10
95
+ - cosine_map@100
96
+ co2_eq_emissions:
97
+ emissions: 40.54325678627484
98
+ energy_consumed: 0.10430421450436282
99
+ source: codecarbon
100
+ training_type: fine-tuning
101
+ on_cloud: false
102
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
103
+ ram_total_size: 31.777088165283203
104
+ hours_used: 0.301
105
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
106
+ model-index:
107
+ - name: MPNet base trained on Natural Questions pairs
108
+ results:
109
+ - task:
110
+ type: information-retrieval
111
+ name: Information Retrieval
112
+ dataset:
113
+ name: NanoClimateFEVER
114
+ type: NanoClimateFEVER
115
+ metrics:
116
+ - type: cosine_accuracy@1
117
+ value: 0.22
118
+ name: Cosine Accuracy@1
119
+ - type: cosine_accuracy@3
120
+ value: 0.44
121
+ name: Cosine Accuracy@3
122
+ - type: cosine_accuracy@5
123
+ value: 0.52
124
+ name: Cosine Accuracy@5
125
+ - type: cosine_accuracy@10
126
+ value: 0.72
127
+ name: Cosine Accuracy@10
128
+ - type: cosine_precision@1
129
+ value: 0.22
130
+ name: Cosine Precision@1
131
+ - type: cosine_precision@3
132
+ value: 0.16666666666666663
133
+ name: Cosine Precision@3
134
+ - type: cosine_precision@5
135
+ value: 0.12
136
+ name: Cosine Precision@5
137
+ - type: cosine_precision@10
138
+ value: 0.09399999999999999
139
+ name: Cosine Precision@10
140
+ - type: cosine_recall@1
141
+ value: 0.09333333333333332
142
+ name: Cosine Recall@1
143
+ - type: cosine_recall@3
144
+ value: 0.195
145
+ name: Cosine Recall@3
146
+ - type: cosine_recall@5
147
+ value: 0.2333333333333333
148
+ name: Cosine Recall@5
149
+ - type: cosine_recall@10
150
+ value: 0.37233333333333335
151
+ name: Cosine Recall@10
152
+ - type: cosine_ndcg@10
153
+ value: 0.2744024872493329
154
+ name: Cosine Ndcg@10
155
+ - type: cosine_mrr@10
156
+ value: 0.3594365079365079
157
+ name: Cosine Mrr@10
158
+ - type: cosine_map@100
159
+ value: 0.20181676147957636
160
+ name: Cosine Map@100
161
+ - task:
162
+ type: information-retrieval
163
+ name: Information Retrieval
164
+ dataset:
165
+ name: NanoDBPedia
166
+ type: NanoDBPedia
167
+ metrics:
168
+ - type: cosine_accuracy@1
169
+ value: 0.46
170
+ name: Cosine Accuracy@1
171
+ - type: cosine_accuracy@3
172
+ value: 0.62
173
+ name: Cosine Accuracy@3
174
+ - type: cosine_accuracy@5
175
+ value: 0.76
176
+ name: Cosine Accuracy@5
177
+ - type: cosine_accuracy@10
178
+ value: 0.82
179
+ name: Cosine Accuracy@10
180
+ - type: cosine_precision@1
181
+ value: 0.46
182
+ name: Cosine Precision@1
183
+ - type: cosine_precision@3
184
+ value: 0.38666666666666666
185
+ name: Cosine Precision@3
186
+ - type: cosine_precision@5
187
+ value: 0.38799999999999996
188
+ name: Cosine Precision@5
189
+ - type: cosine_precision@10
190
+ value: 0.344
191
+ name: Cosine Precision@10
192
+ - type: cosine_recall@1
193
+ value: 0.03065300183409328
194
+ name: Cosine Recall@1
195
+ - type: cosine_recall@3
196
+ value: 0.07730098142643593
197
+ name: Cosine Recall@3
198
+ - type: cosine_recall@5
199
+ value: 0.14588470319900892
200
+ name: Cosine Recall@5
201
+ - type: cosine_recall@10
202
+ value: 0.22159653924772912
203
+ name: Cosine Recall@10
204
+ - type: cosine_ndcg@10
205
+ value: 0.3920743245484332
206
+ name: Cosine Ndcg@10
207
+ - type: cosine_mrr@10
208
+ value: 0.567
209
+ name: Cosine Mrr@10
210
+ - type: cosine_map@100
211
+ value: 0.28153419189397744
212
+ name: Cosine Map@100
213
+ - task:
214
+ type: information-retrieval
215
+ name: Information Retrieval
216
+ dataset:
217
+ name: NanoFEVER
218
+ type: NanoFEVER
219
+ metrics:
220
+ - type: cosine_accuracy@1
221
+ value: 0.38
222
+ name: Cosine Accuracy@1
223
+ - type: cosine_accuracy@3
224
+ value: 0.54
225
+ name: Cosine Accuracy@3
226
+ - type: cosine_accuracy@5
227
+ value: 0.58
228
+ name: Cosine Accuracy@5
229
+ - type: cosine_accuracy@10
230
+ value: 0.68
231
+ name: Cosine Accuracy@10
232
+ - type: cosine_precision@1
233
+ value: 0.38
234
+ name: Cosine Precision@1
235
+ - type: cosine_precision@3
236
+ value: 0.18
237
+ name: Cosine Precision@3
238
+ - type: cosine_precision@5
239
+ value: 0.12
240
+ name: Cosine Precision@5
241
+ - type: cosine_precision@10
242
+ value: 0.07
243
+ name: Cosine Precision@10
244
+ - type: cosine_recall@1
245
+ value: 0.37
246
+ name: Cosine Recall@1
247
+ - type: cosine_recall@3
248
+ value: 0.52
249
+ name: Cosine Recall@3
250
+ - type: cosine_recall@5
251
+ value: 0.57
252
+ name: Cosine Recall@5
253
+ - type: cosine_recall@10
254
+ value: 0.66
255
+ name: Cosine Recall@10
256
+ - type: cosine_ndcg@10
257
+ value: 0.5156585003907987
258
+ name: Cosine Ndcg@10
259
+ - type: cosine_mrr@10
260
+ value: 0.4756666666666666
261
+ name: Cosine Mrr@10
262
+ - type: cosine_map@100
263
+ value: 0.47620972127897226
264
+ name: Cosine Map@100
265
+ - task:
266
+ type: information-retrieval
267
+ name: Information Retrieval
268
+ dataset:
269
+ name: NanoFiQA2018
270
+ type: NanoFiQA2018
271
+ metrics:
272
+ - type: cosine_accuracy@1
273
+ value: 0.28
274
+ name: Cosine Accuracy@1
275
+ - type: cosine_accuracy@3
276
+ value: 0.5
277
+ name: Cosine Accuracy@3
278
+ - type: cosine_accuracy@5
279
+ value: 0.52
280
+ name: Cosine Accuracy@5
281
+ - type: cosine_accuracy@10
282
+ value: 0.58
283
+ name: Cosine Accuracy@10
284
+ - type: cosine_precision@1
285
+ value: 0.28
286
+ name: Cosine Precision@1
287
+ - type: cosine_precision@3
288
+ value: 0.22
289
+ name: Cosine Precision@3
290
+ - type: cosine_precision@5
291
+ value: 0.16399999999999998
292
+ name: Cosine Precision@5
293
+ - type: cosine_precision@10
294
+ value: 0.09799999999999999
295
+ name: Cosine Precision@10
296
+ - type: cosine_recall@1
297
+ value: 0.1371904761904762
298
+ name: Cosine Recall@1
299
+ - type: cosine_recall@3
300
+ value: 0.3226904761904762
301
+ name: Cosine Recall@3
302
+ - type: cosine_recall@5
303
+ value: 0.3682142857142857
304
+ name: Cosine Recall@5
305
+ - type: cosine_recall@10
306
+ value: 0.43073809523809525
307
+ name: Cosine Recall@10
308
+ - type: cosine_ndcg@10
309
+ value: 0.3420135901424927
310
+ name: Cosine Ndcg@10
311
+ - type: cosine_mrr@10
312
+ value: 0.38405555555555554
313
+ name: Cosine Mrr@10
314
+ - type: cosine_map@100
315
+ value: 0.2826394452885763
316
+ name: Cosine Map@100
317
+ - task:
318
+ type: information-retrieval
319
+ name: Information Retrieval
320
+ dataset:
321
+ name: NanoHotpotQA
322
+ type: NanoHotpotQA
323
+ metrics:
324
+ - type: cosine_accuracy@1
325
+ value: 0.34
326
+ name: Cosine Accuracy@1
327
+ - type: cosine_accuracy@3
328
+ value: 0.52
329
+ name: Cosine Accuracy@3
330
+ - type: cosine_accuracy@5
331
+ value: 0.62
332
+ name: Cosine Accuracy@5
333
+ - type: cosine_accuracy@10
334
+ value: 0.72
335
+ name: Cosine Accuracy@10
336
+ - type: cosine_precision@1
337
+ value: 0.34
338
+ name: Cosine Precision@1
339
+ - type: cosine_precision@3
340
+ value: 0.19333333333333333
341
+ name: Cosine Precision@3
342
+ - type: cosine_precision@5
343
+ value: 0.14400000000000002
344
+ name: Cosine Precision@5
345
+ - type: cosine_precision@10
346
+ value: 0.09200000000000001
347
+ name: Cosine Precision@10
348
+ - type: cosine_recall@1
349
+ value: 0.17
350
+ name: Cosine Recall@1
351
+ - type: cosine_recall@3
352
+ value: 0.29
353
+ name: Cosine Recall@3
354
+ - type: cosine_recall@5
355
+ value: 0.36
356
+ name: Cosine Recall@5
357
+ - type: cosine_recall@10
358
+ value: 0.46
359
+ name: Cosine Recall@10
360
+ - type: cosine_ndcg@10
361
+ value: 0.3723049657456267
362
+ name: Cosine Ndcg@10
363
+ - type: cosine_mrr@10
364
+ value: 0.4570793650793651
365
+ name: Cosine Mrr@10
366
+ - type: cosine_map@100
367
+ value: 0.2995175868330484
368
+ name: Cosine Map@100
369
+ - task:
370
+ type: information-retrieval
371
+ name: Information Retrieval
372
+ dataset:
373
+ name: NanoMSMARCO
374
+ type: NanoMSMARCO
375
+ metrics:
376
+ - type: cosine_accuracy@1
377
+ value: 0.1
378
+ name: Cosine Accuracy@1
379
+ - type: cosine_accuracy@3
380
+ value: 0.28
381
+ name: Cosine Accuracy@3
382
+ - type: cosine_accuracy@5
383
+ value: 0.52
384
+ name: Cosine Accuracy@5
385
+ - type: cosine_accuracy@10
386
+ value: 0.68
387
+ name: Cosine Accuracy@10
388
+ - type: cosine_precision@1
389
+ value: 0.1
390
+ name: Cosine Precision@1
391
+ - type: cosine_precision@3
392
+ value: 0.09333333333333332
393
+ name: Cosine Precision@3
394
+ - type: cosine_precision@5
395
+ value: 0.10400000000000001
396
+ name: Cosine Precision@5
397
+ - type: cosine_precision@10
398
+ value: 0.068
399
+ name: Cosine Precision@10
400
+ - type: cosine_recall@1
401
+ value: 0.1
402
+ name: Cosine Recall@1
403
+ - type: cosine_recall@3
404
+ value: 0.28
405
+ name: Cosine Recall@3
406
+ - type: cosine_recall@5
407
+ value: 0.52
408
+ name: Cosine Recall@5
409
+ - type: cosine_recall@10
410
+ value: 0.68
411
+ name: Cosine Recall@10
412
+ - type: cosine_ndcg@10
413
+ value: 0.36083481845261806
414
+ name: Cosine Ndcg@10
415
+ - type: cosine_mrr@10
416
+ value: 0.26157142857142857
417
+ name: Cosine Mrr@10
418
+ - type: cosine_map@100
419
+ value: 0.27215692684924997
420
+ name: Cosine Map@100
421
+ - task:
422
+ type: information-retrieval
423
+ name: Information Retrieval
424
+ dataset:
425
+ name: NanoNFCorpus
426
+ type: NanoNFCorpus
427
+ metrics:
428
+ - type: cosine_accuracy@1
429
+ value: 0.26
430
+ name: Cosine Accuracy@1
431
+ - type: cosine_accuracy@3
432
+ value: 0.38
433
+ name: Cosine Accuracy@3
434
+ - type: cosine_accuracy@5
435
+ value: 0.44
436
+ name: Cosine Accuracy@5
437
+ - type: cosine_accuracy@10
438
+ value: 0.5
439
+ name: Cosine Accuracy@10
440
+ - type: cosine_precision@1
441
+ value: 0.26
442
+ name: Cosine Precision@1
443
+ - type: cosine_precision@3
444
+ value: 0.21333333333333332
445
+ name: Cosine Precision@3
446
+ - type: cosine_precision@5
447
+ value: 0.19599999999999998
448
+ name: Cosine Precision@5
449
+ - type: cosine_precision@10
450
+ value: 0.13799999999999998
451
+ name: Cosine Precision@10
452
+ - type: cosine_recall@1
453
+ value: 0.01122167476431692
454
+ name: Cosine Recall@1
455
+ - type: cosine_recall@3
456
+ value: 0.02047531859468654
457
+ name: Cosine Recall@3
458
+ - type: cosine_recall@5
459
+ value: 0.03079316493603994
460
+ name: Cosine Recall@5
461
+ - type: cosine_recall@10
462
+ value: 0.0422192068561938
463
+ name: Cosine Recall@10
464
+ - type: cosine_ndcg@10
465
+ value: 0.1654539374427929
466
+ name: Cosine Ndcg@10
467
+ - type: cosine_mrr@10
468
+ value: 0.3367460317460317
469
+ name: Cosine Mrr@10
470
+ - type: cosine_map@100
471
+ value: 0.04901233559063261
472
+ name: Cosine Map@100
473
+ - task:
474
+ type: information-retrieval
475
+ name: Information Retrieval
476
+ dataset:
477
+ name: NanoNQ
478
+ type: NanoNQ
479
+ metrics:
480
+ - type: cosine_accuracy@1
481
+ value: 0.14
482
+ name: Cosine Accuracy@1
483
+ - type: cosine_accuracy@3
484
+ value: 0.36
485
+ name: Cosine Accuracy@3
486
+ - type: cosine_accuracy@5
487
+ value: 0.44
488
+ name: Cosine Accuracy@5
489
+ - type: cosine_accuracy@10
490
+ value: 0.58
491
+ name: Cosine Accuracy@10
492
+ - type: cosine_precision@1
493
+ value: 0.14
494
+ name: Cosine Precision@1
495
+ - type: cosine_precision@3
496
+ value: 0.11999999999999998
497
+ name: Cosine Precision@3
498
+ - type: cosine_precision@5
499
+ value: 0.08800000000000002
500
+ name: Cosine Precision@5
501
+ - type: cosine_precision@10
502
+ value: 0.06000000000000001
503
+ name: Cosine Precision@10
504
+ - type: cosine_recall@1
505
+ value: 0.13
506
+ name: Cosine Recall@1
507
+ - type: cosine_recall@3
508
+ value: 0.34
509
+ name: Cosine Recall@3
510
+ - type: cosine_recall@5
511
+ value: 0.41
512
+ name: Cosine Recall@5
513
+ - type: cosine_recall@10
514
+ value: 0.55
515
+ name: Cosine Recall@10
516
+ - type: cosine_ndcg@10
517
+ value: 0.33223439819785083
518
+ name: Cosine Ndcg@10
519
+ - type: cosine_mrr@10
520
+ value: 0.2734365079365079
521
+ name: Cosine Mrr@10
522
+ - type: cosine_map@100
523
+ value: 0.2764557370904448
524
+ name: Cosine Map@100
525
+ - task:
526
+ type: information-retrieval
527
+ name: Information Retrieval
528
+ dataset:
529
+ name: NanoQuoraRetrieval
530
+ type: NanoQuoraRetrieval
531
+ metrics:
532
+ - type: cosine_accuracy@1
533
+ value: 0.82
534
+ name: Cosine Accuracy@1
535
+ - type: cosine_accuracy@3
536
+ value: 0.9
537
+ name: Cosine Accuracy@3
538
+ - type: cosine_accuracy@5
539
+ value: 0.92
540
+ name: Cosine Accuracy@5
541
+ - type: cosine_accuracy@10
542
+ value: 0.96
543
+ name: Cosine Accuracy@10
544
+ - type: cosine_precision@1
545
+ value: 0.82
546
+ name: Cosine Precision@1
547
+ - type: cosine_precision@3
548
+ value: 0.3666666666666666
549
+ name: Cosine Precision@3
550
+ - type: cosine_precision@5
551
+ value: 0.244
552
+ name: Cosine Precision@5
553
+ - type: cosine_precision@10
554
+ value: 0.13399999999999998
555
+ name: Cosine Precision@10
556
+ - type: cosine_recall@1
557
+ value: 0.7206666666666667
558
+ name: Cosine Recall@1
559
+ - type: cosine_recall@3
560
+ value: 0.8553333333333333
561
+ name: Cosine Recall@3
562
+ - type: cosine_recall@5
563
+ value: 0.8993333333333333
564
+ name: Cosine Recall@5
565
+ - type: cosine_recall@10
566
+ value: 0.9566666666666666
567
+ name: Cosine Recall@10
568
+ - type: cosine_ndcg@10
569
+ value: 0.8807317086981499
570
+ name: Cosine Ndcg@10
571
+ - type: cosine_mrr@10
572
+ value: 0.8616666666666666
573
+ name: Cosine Mrr@10
574
+ - type: cosine_map@100
575
+ value: 0.8525831566094724
576
+ name: Cosine Map@100
577
+ - task:
578
+ type: information-retrieval
579
+ name: Information Retrieval
580
+ dataset:
581
+ name: NanoSCIDOCS
582
+ type: NanoSCIDOCS
583
+ metrics:
584
+ - type: cosine_accuracy@1
585
+ value: 0.34
586
+ name: Cosine Accuracy@1
587
+ - type: cosine_accuracy@3
588
+ value: 0.48
589
+ name: Cosine Accuracy@3
590
+ - type: cosine_accuracy@5
591
+ value: 0.54
592
+ name: Cosine Accuracy@5
593
+ - type: cosine_accuracy@10
594
+ value: 0.66
595
+ name: Cosine Accuracy@10
596
+ - type: cosine_precision@1
597
+ value: 0.34
598
+ name: Cosine Precision@1
599
+ - type: cosine_precision@3
600
+ value: 0.24666666666666667
601
+ name: Cosine Precision@3
602
+ - type: cosine_precision@5
603
+ value: 0.212
604
+ name: Cosine Precision@5
605
+ - type: cosine_precision@10
606
+ value: 0.14800000000000002
607
+ name: Cosine Precision@10
608
+ - type: cosine_recall@1
609
+ value: 0.07066666666666668
610
+ name: Cosine Recall@1
611
+ - type: cosine_recall@3
612
+ value: 0.15366666666666667
613
+ name: Cosine Recall@3
614
+ - type: cosine_recall@5
615
+ value: 0.21866666666666668
616
+ name: Cosine Recall@5
617
+ - type: cosine_recall@10
618
+ value: 0.30466666666666664
619
+ name: Cosine Recall@10
620
+ - type: cosine_ndcg@10
621
+ value: 0.28968259227673265
622
+ name: Cosine Ndcg@10
623
+ - type: cosine_mrr@10
624
+ value: 0.4286349206349206
625
+ name: Cosine Mrr@10
626
+ - type: cosine_map@100
627
+ value: 0.22985309744949503
628
+ name: Cosine Map@100
629
+ - task:
630
+ type: information-retrieval
631
+ name: Information Retrieval
632
+ dataset:
633
+ name: NanoArguAna
634
+ type: NanoArguAna
635
+ metrics:
636
+ - type: cosine_accuracy@1
637
+ value: 0.18
638
+ name: Cosine Accuracy@1
639
+ - type: cosine_accuracy@3
640
+ value: 0.56
641
+ name: Cosine Accuracy@3
642
+ - type: cosine_accuracy@5
643
+ value: 0.62
644
+ name: Cosine Accuracy@5
645
+ - type: cosine_accuracy@10
646
+ value: 0.84
647
+ name: Cosine Accuracy@10
648
+ - type: cosine_precision@1
649
+ value: 0.18
650
+ name: Cosine Precision@1
651
+ - type: cosine_precision@3
652
+ value: 0.18666666666666668
653
+ name: Cosine Precision@3
654
+ - type: cosine_precision@5
655
+ value: 0.124
656
+ name: Cosine Precision@5
657
+ - type: cosine_precision@10
658
+ value: 0.08399999999999999
659
+ name: Cosine Precision@10
660
+ - type: cosine_recall@1
661
+ value: 0.18
662
+ name: Cosine Recall@1
663
+ - type: cosine_recall@3
664
+ value: 0.56
665
+ name: Cosine Recall@3
666
+ - type: cosine_recall@5
667
+ value: 0.62
668
+ name: Cosine Recall@5
669
+ - type: cosine_recall@10
670
+ value: 0.84
671
+ name: Cosine Recall@10
672
+ - type: cosine_ndcg@10
673
+ value: 0.49726259302609505
674
+ name: Cosine Ndcg@10
675
+ - type: cosine_mrr@10
676
+ value: 0.389079365079365
677
+ name: Cosine Mrr@10
678
+ - type: cosine_map@100
679
+ value: 0.3967117258845785
680
+ name: Cosine Map@100
681
+ - task:
682
+ type: information-retrieval
683
+ name: Information Retrieval
684
+ dataset:
685
+ name: NanoSciFact
686
+ type: NanoSciFact
687
+ metrics:
688
+ - type: cosine_accuracy@1
689
+ value: 0.38
690
+ name: Cosine Accuracy@1
691
+ - type: cosine_accuracy@3
692
+ value: 0.46
693
+ name: Cosine Accuracy@3
694
+ - type: cosine_accuracy@5
695
+ value: 0.48
696
+ name: Cosine Accuracy@5
697
+ - type: cosine_accuracy@10
698
+ value: 0.62
699
+ name: Cosine Accuracy@10
700
+ - type: cosine_precision@1
701
+ value: 0.38
702
+ name: Cosine Precision@1
703
+ - type: cosine_precision@3
704
+ value: 0.16666666666666663
705
+ name: Cosine Precision@3
706
+ - type: cosine_precision@5
707
+ value: 0.10400000000000001
708
+ name: Cosine Precision@5
709
+ - type: cosine_precision@10
710
+ value: 0.068
711
+ name: Cosine Precision@10
712
+ - type: cosine_recall@1
713
+ value: 0.345
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@3
716
+ value: 0.44
717
+ name: Cosine Recall@3
718
+ - type: cosine_recall@5
719
+ value: 0.46
720
+ name: Cosine Recall@5
721
+ - type: cosine_recall@10
722
+ value: 0.605
723
+ name: Cosine Recall@10
724
+ - type: cosine_ndcg@10
725
+ value: 0.47012843706683605
726
+ name: Cosine Ndcg@10
727
+ - type: cosine_mrr@10
728
+ value: 0.4409285714285714
729
+ name: Cosine Mrr@10
730
+ - type: cosine_map@100
731
+ value: 0.43840522432574647
732
+ name: Cosine Map@100
733
+ - task:
734
+ type: information-retrieval
735
+ name: Information Retrieval
736
+ dataset:
737
+ name: NanoTouche2020
738
+ type: NanoTouche2020
739
+ metrics:
740
+ - type: cosine_accuracy@1
741
+ value: 0.5306122448979592
742
+ name: Cosine Accuracy@1
743
+ - type: cosine_accuracy@3
744
+ value: 0.7551020408163265
745
+ name: Cosine Accuracy@3
746
+ - type: cosine_accuracy@5
747
+ value: 0.8571428571428571
748
+ name: Cosine Accuracy@5
749
+ - type: cosine_accuracy@10
750
+ value: 0.9387755102040817
751
+ name: Cosine Accuracy@10
752
+ - type: cosine_precision@1
753
+ value: 0.5306122448979592
754
+ name: Cosine Precision@1
755
+ - type: cosine_precision@3
756
+ value: 0.45578231292517
757
+ name: Cosine Precision@3
758
+ - type: cosine_precision@5
759
+ value: 0.4040816326530612
760
+ name: Cosine Precision@5
761
+ - type: cosine_precision@10
762
+ value: 0.336734693877551
763
+ name: Cosine Precision@10
764
+ - type: cosine_recall@1
765
+ value: 0.03881638827876476
766
+ name: Cosine Recall@1
767
+ - type: cosine_recall@3
768
+ value: 0.10008002766114979
769
+ name: Cosine Recall@3
770
+ - type: cosine_recall@5
771
+ value: 0.13975964122053652
772
+ name: Cosine Recall@5
773
+ - type: cosine_recall@10
774
+ value: 0.22966349775526734
775
+ name: Cosine Recall@10
776
+ - type: cosine_ndcg@10
777
+ value: 0.39339080810676896
778
+ name: Cosine Ndcg@10
779
+ - type: cosine_mrr@10
780
+ value: 0.6553206997084549
781
+ name: Cosine Mrr@10
782
+ - type: cosine_map@100
783
+ value: 0.31344772891929434
784
+ name: Cosine Map@100
785
+ - task:
786
+ type: nano-beir
787
+ name: Nano BEIR
788
+ dataset:
789
+ name: NanoBEIR mean
790
+ type: NanoBEIR_mean
791
+ metrics:
792
+ - type: cosine_accuracy@1
793
+ value: 0.3408163265306122
794
+ name: Cosine Accuracy@1
795
+ - type: cosine_accuracy@3
796
+ value: 0.5227001569858712
797
+ name: Cosine Accuracy@3
798
+ - type: cosine_accuracy@5
799
+ value: 0.6013186813186814
800
+ name: Cosine Accuracy@5
801
+ - type: cosine_accuracy@10
802
+ value: 0.7152904238618524
803
+ name: Cosine Accuracy@10
804
+ - type: cosine_precision@1
805
+ value: 0.3408163265306122
806
+ name: Cosine Precision@1
807
+ - type: cosine_precision@3
808
+ value: 0.23044479330193612
809
+ name: Cosine Precision@3
810
+ - type: cosine_precision@5
811
+ value: 0.1855447409733124
812
+ name: Cosine Precision@5
813
+ - type: cosine_precision@10
814
+ value: 0.13344113029827318
815
+ name: Cosine Precision@10
816
+ - type: cosine_recall@1
817
+ value: 0.18442678521033212
818
+ name: Cosine Recall@1
819
+ - type: cosine_recall@3
820
+ value: 0.31958052337482684
821
+ name: Cosine Recall@3
822
+ - type: cosine_recall@5
823
+ value: 0.3827680868002465
824
+ name: Cosine Recall@5
825
+ - type: cosine_recall@10
826
+ value: 0.4886833850587655
827
+ name: Cosine Recall@10
828
+ - type: cosine_ndcg@10
829
+ value: 0.4066287047188099
830
+ name: Cosine Ndcg@10
831
+ - type: cosine_mrr@10
832
+ value: 0.4531247913084647
833
+ name: Cosine Mrr@10
834
+ - type: cosine_map@100
835
+ value: 0.33618027996100497
836
+ name: Cosine Map@100
837
+ ---
838
+
839
+ # MPNet base trained on Natural Questions pairs
840
+
841
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
842
+
843
+ ## Model Details
844
+
845
+ ### Model Description
846
+ - **Model Type:** Sentence Transformer
847
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
848
+ - **Maximum Sequence Length:** 512 tokens
849
+ - **Output Dimensionality:** 768 dimensions
850
+ - **Similarity Function:** Cosine Similarity
851
+ - **Training Dataset:**
852
+ - [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives)
853
+ - **Language:** en
854
+ - **License:** apache-2.0
855
+
856
+ ### Model Sources
857
+
858
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
859
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
860
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
861
+
862
+ ### Full Model Architecture
863
+
864
+ ```
865
+ SentenceTransformer(
866
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
867
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
868
+ )
869
+ ```
870
+
871
+ ## Usage
872
+
873
+ ### Direct Usage (Sentence Transformers)
874
+
875
+ First install the Sentence Transformers library:
876
+
877
+ ```bash
878
+ pip install -U sentence-transformers
879
+ ```
880
+
881
+ Then you can load this model and run inference.
882
+ ```python
883
+ from sentence_transformers import SentenceTransformer
884
+
885
+ # Download from the 🤗 Hub
886
+ model = SentenceTransformer("tomaarsen/mpnet-base-nq-cgist-triplet-neg-gte")
887
+ # Run inference
888
+ sentences = [
889
+ 'what energy is released when coal is burned?',
890
+ 'When coal is burned, it reacts with the oxygen in the air. This chemical reaction converts the stored solar energy into thermal energy, which is released as heat. But it also produces carbon dioxide and methane.',
891
+ 'When coal is burned it releases a number of airborne toxins and pollutants. They include mercury, lead, sulfur dioxide, nitrogen oxides, particulates, and various other heavy metals.',
892
+ ]
893
+ embeddings = model.encode(sentences)
894
+ print(embeddings.shape)
895
+ # [3, 768]
896
+
897
+ # Get the similarity scores for the embeddings
898
+ similarities = model.similarity(embeddings, embeddings)
899
+ print(similarities.shape)
900
+ # [3, 3]
901
+ ```
902
+
903
+ <!--
904
+ ### Direct Usage (Transformers)
905
+
906
+ <details><summary>Click to see the direct usage in Transformers</summary>
907
+
908
+ </details>
909
+ -->
910
+
911
+ <!--
912
+ ### Downstream Usage (Sentence Transformers)
913
+
914
+ You can finetune this model on your own dataset.
915
+
916
+ <details><summary>Click to expand</summary>
917
+
918
+ </details>
919
+ -->
920
+
921
+ <!--
922
+ ### Out-of-Scope Use
923
+
924
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
925
+ -->
926
+
927
+ ## Evaluation
928
+
929
+ ### Metrics
930
+
931
+ #### Information Retrieval
932
+
933
+ * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
934
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
935
+
936
+ | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
937
+ |:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
938
+ | cosine_accuracy@1 | 0.22 | 0.46 | 0.38 | 0.28 | 0.34 | 0.1 | 0.26 | 0.14 | 0.82 | 0.34 | 0.18 | 0.38 | 0.5306 |
939
+ | cosine_accuracy@3 | 0.44 | 0.62 | 0.54 | 0.5 | 0.52 | 0.28 | 0.38 | 0.36 | 0.9 | 0.48 | 0.56 | 0.46 | 0.7551 |
940
+ | cosine_accuracy@5 | 0.52 | 0.76 | 0.58 | 0.52 | 0.62 | 0.52 | 0.44 | 0.44 | 0.92 | 0.54 | 0.62 | 0.48 | 0.8571 |
941
+ | cosine_accuracy@10 | 0.72 | 0.82 | 0.68 | 0.58 | 0.72 | 0.68 | 0.5 | 0.58 | 0.96 | 0.66 | 0.84 | 0.62 | 0.9388 |
942
+ | cosine_precision@1 | 0.22 | 0.46 | 0.38 | 0.28 | 0.34 | 0.1 | 0.26 | 0.14 | 0.82 | 0.34 | 0.18 | 0.38 | 0.5306 |
943
+ | cosine_precision@3 | 0.1667 | 0.3867 | 0.18 | 0.22 | 0.1933 | 0.0933 | 0.2133 | 0.12 | 0.3667 | 0.2467 | 0.1867 | 0.1667 | 0.4558 |
944
+ | cosine_precision@5 | 0.12 | 0.388 | 0.12 | 0.164 | 0.144 | 0.104 | 0.196 | 0.088 | 0.244 | 0.212 | 0.124 | 0.104 | 0.4041 |
945
+ | cosine_precision@10 | 0.094 | 0.344 | 0.07 | 0.098 | 0.092 | 0.068 | 0.138 | 0.06 | 0.134 | 0.148 | 0.084 | 0.068 | 0.3367 |
946
+ | cosine_recall@1 | 0.0933 | 0.0307 | 0.37 | 0.1372 | 0.17 | 0.1 | 0.0112 | 0.13 | 0.7207 | 0.0707 | 0.18 | 0.345 | 0.0388 |
947
+ | cosine_recall@3 | 0.195 | 0.0773 | 0.52 | 0.3227 | 0.29 | 0.28 | 0.0205 | 0.34 | 0.8553 | 0.1537 | 0.56 | 0.44 | 0.1001 |
948
+ | cosine_recall@5 | 0.2333 | 0.1459 | 0.57 | 0.3682 | 0.36 | 0.52 | 0.0308 | 0.41 | 0.8993 | 0.2187 | 0.62 | 0.46 | 0.1398 |
949
+ | cosine_recall@10 | 0.3723 | 0.2216 | 0.66 | 0.4307 | 0.46 | 0.68 | 0.0422 | 0.55 | 0.9567 | 0.3047 | 0.84 | 0.605 | 0.2297 |
950
+ | **cosine_ndcg@10** | **0.2744** | **0.3921** | **0.5157** | **0.342** | **0.3723** | **0.3608** | **0.1655** | **0.3322** | **0.8807** | **0.2897** | **0.4973** | **0.4701** | **0.3934** |
951
+ | cosine_mrr@10 | 0.3594 | 0.567 | 0.4757 | 0.3841 | 0.4571 | 0.2616 | 0.3367 | 0.2734 | 0.8617 | 0.4286 | 0.3891 | 0.4409 | 0.6553 |
952
+ | cosine_map@100 | 0.2018 | 0.2815 | 0.4762 | 0.2826 | 0.2995 | 0.2722 | 0.049 | 0.2765 | 0.8526 | 0.2299 | 0.3967 | 0.4384 | 0.3134 |
953
+
954
+ #### Nano BEIR
955
+
956
+ * Dataset: `NanoBEIR_mean`
957
+ * Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
958
+
959
+ | Metric | Value |
960
+ |:--------------------|:-----------|
961
+ | cosine_accuracy@1 | 0.3408 |
962
+ | cosine_accuracy@3 | 0.5227 |
963
+ | cosine_accuracy@5 | 0.6013 |
964
+ | cosine_accuracy@10 | 0.7153 |
965
+ | cosine_precision@1 | 0.3408 |
966
+ | cosine_precision@3 | 0.2304 |
967
+ | cosine_precision@5 | 0.1855 |
968
+ | cosine_precision@10 | 0.1334 |
969
+ | cosine_recall@1 | 0.1844 |
970
+ | cosine_recall@3 | 0.3196 |
971
+ | cosine_recall@5 | 0.3828 |
972
+ | cosine_recall@10 | 0.4887 |
973
+ | **cosine_ndcg@10** | **0.4066** |
974
+ | cosine_mrr@10 | 0.4531 |
975
+ | cosine_map@100 | 0.3362 |
976
+
977
+ <!--
978
+ ## Bias, Risks and Limitations
979
+
980
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
981
+ -->
982
+
983
+ <!--
984
+ ### Recommendations
985
+
986
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
987
+ -->
988
+
989
+ ## Training Details
990
+
991
+ ### Training Dataset
992
+
993
+ #### gooaq-hard-negatives
994
+
995
+ * Dataset: [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2)
996
+ * Size: 50,000 training samples
997
+ * Columns: <code>question</code>, <code>answer</code>, and <code>negative</code>
998
+ * Approximate statistics based on the first 1000 samples:
999
+ | | question | answer | negative |
1000
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
1001
+ | type | string | string | string |
1002
+ | details | <ul><li>min: 8 tokens</li><li>mean: 11.53 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 59.79 tokens</li><li>max: 150 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 58.76 tokens</li><li>max: 143 tokens</li></ul> |
1003
+ * Samples:
1004
+ | question | answer | negative |
1005
+ |:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1006
+ | <code>what is the difference between calories from fat and total fat?</code> | <code>Fat has more than twice as many calories per gram as carbohydrates and proteins. A gram of fat has about 9 calories, while a gram of carbohydrate or protein has about 4 calories. In other words, you could eat twice as much carbohydrates or proteins as fat for the same amount of calories.</code> | <code>Fat has more than twice as many calories per gram as carbohydrates and proteins. A gram of fat has about 9 calories, while a gram of carbohydrate or protein has about 4 calories. In other words, you could eat twice as much carbohydrates or proteins as fat for the same amount of calories.</code> |
1007
+ | <code>what is the difference between return transcript and account transcript?</code> | <code>A tax return transcript usually meets the needs of lending institutions offering mortgages and student loans. ... Tax Account Transcript - shows basic data such as return type, marital status, adjusted gross income, taxable income and all payment types. It also shows changes made after you filed your original return.</code> | <code>Trial balance is not a financial statement whereas a balance sheet is a financial statement. Trial balance is solely used for internal purposes whereas a balance sheet is used for purposes other than internal i.e. external. In a trial balance, each and every account is divided into debit (dr.) and credit (cr.)</code> |
1008
+ | <code>how long does my dog need to fast before sedation?</code> | <code>Now, guidelines are aimed towards 6-8 hours before surgery. This pre-op fasting time is much more beneficial for your pets because you have enough food in there to neutralize the stomach acid, preventing it from coming up the esophagus that causes regurgitation under anesthetic.</code> | <code>Try not to let your pooch rapidly wolf down his/her food! Do not let the dog play or exercise (e.g. go for a walk) for at least two hours after having a meal. Ensure continuous fresh water is available to avoid your pet gulping down a large amount after eating.</code> |
1009
+ * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
1010
+ ```json
1011
+ {'guide': SentenceTransformer(
1012
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
1013
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1014
+ (2): Normalize()
1015
+ ), 'temperature': 0.01}
1016
+ ```
1017
+
1018
+ ### Evaluation Dataset
1019
+
1020
+ #### gooaq-hard-negatives
1021
+
1022
+ * Dataset: [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2)
1023
+ * Size: 10,048,700 evaluation samples
1024
+ * Columns: <code>question</code>, <code>answer</code>, and <code>negative</code>
1025
+ * Approximate statistics based on the first 1000 samples:
1026
+ | | question | answer | negative |
1027
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
1028
+ | type | string | string | string |
1029
+ | details | <ul><li>min: 8 tokens</li><li>mean: 11.61 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 58.16 tokens</li><li>max: 131 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.98 tokens</li><li>max: 157 tokens</li></ul> |
1030
+ * Samples:
1031
+ | question | answer | negative |
1032
+ |:--------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1033
+ | <code>how is height width and length written?</code> | <code>The Graphics' industry standard is width by height (width x height). Meaning that when you write your measurements, you write them from your point of view, beginning with the width.</code> | <code>The Graphics' industry standard is width by height (width x height). Meaning that when you write your measurements, you write them from your point of view, beginning with the width. That's important.</code> |
1034
+ | <code>what is the difference between pork shoulder and loin?</code> | <code>All the recipes I've found for pulled pork recommends a shoulder/butt. Shoulders take longer to cook than a loin, because they're tougher. Loins are lean, while shoulders have marbled fat inside.</code> | <code>They are extracted from the loin, which runs from the hip to the shoulder, and it has a small strip of meat called the tenderloin. Unlike other pork, this pork chop is cut from four major sections, which are the shoulder, also known as the blade chops, ribs chops, loin chops, and the last, which is the sirloin chops.</code> |
1035
+ | <code>is the yin yang symbol religious?</code> | <code>The ubiquitous yin-yang symbol holds its roots in Taoism/Daoism, a Chinese religion and philosophy. The yin, the dark swirl, is associated with shadows, femininity, and the trough of a wave; the yang, the light swirl, represents brightness, passion and growth.</code> | <code>Yin energy is in the calm colors around you, in the soft music, in the soothing sound of a water fountain, or the relaxing images of water. Yang (active energy) is the feng shui energy expressed in strong, vibrant sounds and colors, bright lights, upward moving energy, tall plants, etc.</code> |
1036
+ * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
1037
+ ```json
1038
+ {'guide': SentenceTransformer(
1039
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
1040
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1041
+ (2): Normalize()
1042
+ ), 'temperature': 0.01}
1043
+ ```
1044
+
1045
+ ### Training Hyperparameters
1046
+ #### Non-Default Hyperparameters
1047
+
1048
+ - `eval_strategy`: steps
1049
+ - `per_device_train_batch_size`: 2048
1050
+ - `per_device_eval_batch_size`: 2048
1051
+ - `learning_rate`: 2e-05
1052
+ - `num_train_epochs`: 1
1053
+ - `warmup_ratio`: 0.1
1054
+ - `seed`: 12
1055
+ - `bf16`: True
1056
+
1057
+ #### All Hyperparameters
1058
+ <details><summary>Click to expand</summary>
1059
+
1060
+ - `overwrite_output_dir`: False
1061
+ - `do_predict`: False
1062
+ - `eval_strategy`: steps
1063
+ - `prediction_loss_only`: True
1064
+ - `per_device_train_batch_size`: 2048
1065
+ - `per_device_eval_batch_size`: 2048
1066
+ - `per_gpu_train_batch_size`: None
1067
+ - `per_gpu_eval_batch_size`: None
1068
+ - `gradient_accumulation_steps`: 1
1069
+ - `eval_accumulation_steps`: None
1070
+ - `torch_empty_cache_steps`: None
1071
+ - `learning_rate`: 2e-05
1072
+ - `weight_decay`: 0.0
1073
+ - `adam_beta1`: 0.9
1074
+ - `adam_beta2`: 0.999
1075
+ - `adam_epsilon`: 1e-08
1076
+ - `max_grad_norm`: 1.0
1077
+ - `num_train_epochs`: 1
1078
+ - `max_steps`: -1
1079
+ - `lr_scheduler_type`: linear
1080
+ - `lr_scheduler_kwargs`: {}
1081
+ - `warmup_ratio`: 0.1
1082
+ - `warmup_steps`: 0
1083
+ - `log_level`: passive
1084
+ - `log_level_replica`: warning
1085
+ - `log_on_each_node`: True
1086
+ - `logging_nan_inf_filter`: True
1087
+ - `save_safetensors`: True
1088
+ - `save_on_each_node`: False
1089
+ - `save_only_model`: False
1090
+ - `restore_callback_states_from_checkpoint`: False
1091
+ - `no_cuda`: False
1092
+ - `use_cpu`: False
1093
+ - `use_mps_device`: False
1094
+ - `seed`: 12
1095
+ - `data_seed`: None
1096
+ - `jit_mode_eval`: False
1097
+ - `use_ipex`: False
1098
+ - `bf16`: True
1099
+ - `fp16`: False
1100
+ - `fp16_opt_level`: O1
1101
+ - `half_precision_backend`: auto
1102
+ - `bf16_full_eval`: False
1103
+ - `fp16_full_eval`: False
1104
+ - `tf32`: None
1105
+ - `local_rank`: 0
1106
+ - `ddp_backend`: None
1107
+ - `tpu_num_cores`: None
1108
+ - `tpu_metrics_debug`: False
1109
+ - `debug`: []
1110
+ - `dataloader_drop_last`: False
1111
+ - `dataloader_num_workers`: 0
1112
+ - `dataloader_prefetch_factor`: None
1113
+ - `past_index`: -1
1114
+ - `disable_tqdm`: False
1115
+ - `remove_unused_columns`: True
1116
+ - `label_names`: None
1117
+ - `load_best_model_at_end`: False
1118
+ - `ignore_data_skip`: False
1119
+ - `fsdp`: []
1120
+ - `fsdp_min_num_params`: 0
1121
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1122
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1123
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1124
+ - `deepspeed`: None
1125
+ - `label_smoothing_factor`: 0.0
1126
+ - `optim`: adamw_torch
1127
+ - `optim_args`: None
1128
+ - `adafactor`: False
1129
+ - `group_by_length`: False
1130
+ - `length_column_name`: length
1131
+ - `ddp_find_unused_parameters`: None
1132
+ - `ddp_bucket_cap_mb`: None
1133
+ - `ddp_broadcast_buffers`: False
1134
+ - `dataloader_pin_memory`: True
1135
+ - `dataloader_persistent_workers`: False
1136
+ - `skip_memory_metrics`: True
1137
+ - `use_legacy_prediction_loop`: False
1138
+ - `push_to_hub`: False
1139
+ - `resume_from_checkpoint`: None
1140
+ - `hub_model_id`: None
1141
+ - `hub_strategy`: every_save
1142
+ - `hub_private_repo`: False
1143
+ - `hub_always_push`: False
1144
+ - `gradient_checkpointing`: False
1145
+ - `gradient_checkpointing_kwargs`: None
1146
+ - `include_inputs_for_metrics`: False
1147
+ - `include_for_metrics`: []
1148
+ - `eval_do_concat_batches`: True
1149
+ - `fp16_backend`: auto
1150
+ - `push_to_hub_model_id`: None
1151
+ - `push_to_hub_organization`: None
1152
+ - `mp_parameters`:
1153
+ - `auto_find_batch_size`: False
1154
+ - `full_determinism`: False
1155
+ - `torchdynamo`: None
1156
+ - `ray_scope`: last
1157
+ - `ddp_timeout`: 1800
1158
+ - `torch_compile`: False
1159
+ - `torch_compile_backend`: None
1160
+ - `torch_compile_mode`: None
1161
+ - `dispatch_batches`: None
1162
+ - `split_batches`: None
1163
+ - `include_tokens_per_second`: False
1164
+ - `include_num_input_tokens_seen`: False
1165
+ - `neftune_noise_alpha`: None
1166
+ - `optim_target_modules`: None
1167
+ - `batch_eval_metrics`: False
1168
+ - `eval_on_start`: False
1169
+ - `use_liger_kernel`: False
1170
+ - `eval_use_gather_object`: False
1171
+ - `average_tokens_across_devices`: False
1172
+ - `prompts`: None
1173
+ - `batch_sampler`: batch_sampler
1174
+ - `multi_dataset_batch_sampler`: proportional
1175
+
1176
+ </details>
1177
+
1178
+ ### Training Logs
1179
+ | Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
1180
+ |:-----:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
1181
+ | 0.04 | 1 | 11.5141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1182
+ | 0.2 | 5 | 9.4407 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1183
+ | 0.4 | 10 | 5.6005 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1184
+ | 0.6 | 15 | 3.7323 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1185
+ | 0.8 | 20 | 2.7976 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1186
+ | 1.0 | 25 | 2.1899 | 1.3429 | 0.2744 | 0.3921 | 0.5157 | 0.3420 | 0.3723 | 0.3608 | 0.1655 | 0.3322 | 0.8807 | 0.2897 | 0.4973 | 0.4701 | 0.3934 | 0.4066 |
1187
+
1188
+
1189
+ ### Environmental Impact
1190
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
1191
+ - **Energy Consumed**: 0.104 kWh
1192
+ - **Carbon Emitted**: 0.041 kg of CO2
1193
+ - **Hours Used**: 0.301 hours
1194
+
1195
+ ### Training Hardware
1196
+ - **On Cloud**: No
1197
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
1198
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
1199
+ - **RAM Size**: 31.78 GB
1200
+
1201
+ ### Framework Versions
1202
+ - Python: 3.11.6
1203
+ - Sentence Transformers: 3.4.0.dev0
1204
+ - Transformers: 4.46.2
1205
+ - PyTorch: 2.5.0+cu121
1206
+ - Accelerate: 0.35.0.dev0
1207
+ - Datasets: 2.20.0
1208
+ - Tokenizers: 0.20.3
1209
+
1210
+ ## Citation
1211
+
1212
+ ### BibTeX
1213
+
1214
+ #### Sentence Transformers
1215
+ ```bibtex
1216
+ @inproceedings{reimers-2019-sentence-bert,
1217
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1218
+ author = "Reimers, Nils and Gurevych, Iryna",
1219
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1220
+ month = "11",
1221
+ year = "2019",
1222
+ publisher = "Association for Computational Linguistics",
1223
+ url = "https://arxiv.org/abs/1908.10084",
1224
+ }
1225
+ ```
1226
+
1227
+ <!--
1228
+ ## Glossary
1229
+
1230
+ *Clearly define terms in order to be accessible across audiences.*
1231
+ -->
1232
+
1233
+ <!--
1234
+ ## Model Card Authors
1235
+
1236
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1237
+ -->
1238
+
1239
+ <!--
1240
+ ## Model Card Contact
1241
+
1242
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1243
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0.dev0",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88e220228e703bd50a9d05e113fceab3cb6fcdc6084b80b6b04e228c15001418
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff