File size: 24,260 Bytes
ae27081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e09ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
---
tags:
- sentence-transformers
- cross-encoder
- text-classification
- generated_from_trainer
- dataset_size:578402
- loss:BinaryCrossEntropyLoss
base_model: answerdotai/ModernBERT-base
pipeline_tag: text-classification
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on answerdotai/ModernBERT-base
  results: []
---

# CrossEncoder based on answerdotai/ModernBERT-base

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
- **Maximum Sequence Length:** 8192 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("sentence_transformers_model_id")
# Get scores for pairs of texts
pairs = [
    ["how to obtain a teacher's certificate in texas?", '["Step 1: Obtain a Bachelor\'s Degree. One of the most important Texas teacher qualifications is a bachelor\'s degree. ... ", \'Step 2: Complete an Educator Preparation Program (EPP) ... \', \'Step 3: Pass Texas Teacher Certification Exams. ... \', \'Step 4: Complete a Final Application and Background Check.\']'],
    ["how to obtain a teacher's certificate in texas?", 'Teacher education programs may take 4 years to complete after which certification plans are prepared for a three year period. During this plan period, the teacher must obtain a Standard Certification within 1-2 years. Learn how to get certified to teach in Texas.'],
    ["how to obtain a teacher's certificate in texas?", "Washington Teachers Licensing Application Process Official transcripts showing proof of bachelor's degree. Proof of teacher program completion at an approved teacher preparation school. Passing scores on the required examinations. Completed application for teacher certification in Washington."],
    ["how to obtain a teacher's certificate in texas?", 'Some aspiring educators may be confused about the difference between teaching certification and teaching certificates. Teacher certification is another term for the licensure required to teach in public schools, while a teaching certificate is awarded upon completion of an academic program.'],
    ["how to obtain a teacher's certificate in texas?", 'In Texas, the minimum age to work is 14. Unlike some states, Texas does not require juvenile workers to obtain a child employment certificate or an age certificate to work. A prospective employer that wants one can request a certificate of age for any minors it employs, obtainable from the Texas Workforce Commission.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    "how to obtain a teacher's certificate in texas?",
    [
        '["Step 1: Obtain a Bachelor\'s Degree. One of the most important Texas teacher qualifications is a bachelor\'s degree. ... ", \'Step 2: Complete an Educator Preparation Program (EPP) ... \', \'Step 3: Pass Texas Teacher Certification Exams. ... \', \'Step 4: Complete a Final Application and Background Check.\']',
        'Teacher education programs may take 4 years to complete after which certification plans are prepared for a three year period. During this plan period, the teacher must obtain a Standard Certification within 1-2 years. Learn how to get certified to teach in Texas.',
        "Washington Teachers Licensing Application Process Official transcripts showing proof of bachelor's degree. Proof of teacher program completion at an approved teacher preparation school. Passing scores on the required examinations. Completed application for teacher certification in Washington.",
        'Some aspiring educators may be confused about the difference between teaching certification and teaching certificates. Teacher certification is another term for the licensure required to teach in public schools, while a teaching certificate is awarded upon completion of an academic program.',
        'In Texas, the minimum age to work is 14. Unlike some states, Texas does not require juvenile workers to obtain a child employment certificate or an age certificate to work. A prospective employer that wants one can request a certificate of age for any minors it employs, obtainable from the Texas Workforce Commission.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `gooaq-dev`, `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>CERerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator)

| Metric      | gooaq-dev            | NanoMSMARCO          | NanoNFCorpus         | NanoNQ               |
|:------------|:---------------------|:---------------------|:---------------------|:---------------------|
| map         | 0.7821 (+0.2485)     | 0.4373 (-0.0523)     | 0.3354 (+0.0650)     | 0.5305 (+0.1098)     |
| mrr@10      | 0.7800 (+0.2560)     | 0.4288 (-0.0487)     | 0.4934 (-0.0064)     | 0.5326 (+0.1059)     |
| **ndcg@10** | **0.8269 (+0.2356)** | **0.5287 (-0.0117)** | **0.3612 (+0.0361)** | **0.5823 (+0.0817)** |

#### Cross Encoder Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>CENanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CENanoBEIREvaluator)

| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.4344 (+0.0408)     |
| mrr@10      | 0.4849 (+0.0169)     |
| **ndcg@10** | **0.4907 (+0.0354)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 578,402 training samples
* Columns: <code>question</code>, <code>answer</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                                       | answer                                                                                           | label                                           |
  |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                         | string                                                                                           | int                                             |
  | details | <ul><li>min: 19 characters</li><li>mean: 43.6 characters</li><li>max: 100 characters</li></ul> | <ul><li>min: 56 characters</li><li>mean: 251.22 characters</li><li>max: 387 characters</li></ul> | <ul><li>0: ~82.90%</li><li>1: ~17.10%</li></ul> |
* Samples:
  | question                                                     | answer                                                                                                                                                                                                                                                                                                                        | label          |
  |:-------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>how to obtain a teacher's certificate in texas?</code> | <code>["Step 1: Obtain a Bachelor's Degree. One of the most important Texas teacher qualifications is a bachelor's degree. ... ", 'Step 2: Complete an Educator Preparation Program (EPP) ... ', 'Step 3: Pass Texas Teacher Certification Exams. ... ', 'Step 4: Complete a Final Application and Background Check.']</code> | <code>1</code> |
  | <code>how to obtain a teacher's certificate in texas?</code> | <code>Teacher education programs may take 4 years to complete after which certification plans are prepared for a three year period. During this plan period, the teacher must obtain a Standard Certification within 1-2 years. Learn how to get certified to teach in Texas.</code>                                          | <code>0</code> |
  | <code>how to obtain a teacher's certificate in texas?</code> | <code>Washington Teachers Licensing Application Process Official transcripts showing proof of bachelor's degree. Proof of teacher program completion at an approved teacher preparation school. Passing scores on the required examinations. Completed application for teacher certification in Washington.</code>            | <code>0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fct": "torch.nn.modules.linear.Identity",
      "pos_weight": 5
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | gooaq-dev_ndcg@10    | NanoMSMARCO_ndcg@10  | NanoNFCorpus_ndcg@10 | NanoNQ_ndcg@10       | NanoBEIR_mean_ndcg@10 |
|:----------:|:--------:|:-------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:---------------------:|
| -1         | -1       | -             | 0.1541 (-0.4371)     | 0.0273 (-0.5131)     | 0.3068 (-0.0182)     | 0.0340 (-0.4666)     | 0.1227 (-0.3326)      |
| 0.0001     | 1        | 1.3693        | -                    | -                    | -                    | -                    | -                     |
| 0.0221     | 200      | 1.1942        | -                    | -                    | -                    | -                    | -                     |
| 0.0443     | 400      | 1.1542        | -                    | -                    | -                    | -                    | -                     |
| 0.0664     | 600      | 0.9421        | -                    | -                    | -                    | -                    | -                     |
| 0.0885     | 800      | 0.7253        | -                    | -                    | -                    | -                    | -                     |
| 0.1106     | 1000     | 0.6955        | 0.7578 (+0.1666)     | 0.4930 (-0.0474)     | 0.3038 (-0.0212)     | 0.6047 (+0.1040)     | 0.4672 (+0.0118)      |
| 0.1328     | 1200     | 0.6236        | -                    | -                    | -                    | -                    | -                     |
| 0.1549     | 1400     | 0.6155        | -                    | -                    | -                    | -                    | -                     |
| 0.1770     | 1600     | 0.6102        | -                    | -                    | -                    | -                    | -                     |
| 0.1992     | 1800     | 0.5621        | -                    | -                    | -                    | -                    | -                     |
| 0.2213     | 2000     | 0.571         | 0.7910 (+0.1998)     | 0.5230 (-0.0174)     | 0.3468 (+0.0217)     | 0.5689 (+0.0683)     | 0.4796 (+0.0242)      |
| 0.2434     | 2200     | 0.5575        | -                    | -                    | -                    | -                    | -                     |
| 0.2655     | 2400     | 0.5539        | -                    | -                    | -                    | -                    | -                     |
| 0.2877     | 2600     | 0.5507        | -                    | -                    | -                    | -                    | -                     |
| 0.3098     | 2800     | 0.5483        | -                    | -                    | -                    | -                    | -                     |
| 0.3319     | 3000     | 0.5204        | 0.8089 (+0.2177)     | 0.5283 (-0.0121)     | 0.3413 (+0.0162)     | 0.5783 (+0.0776)     | 0.4826 (+0.0272)      |
| 0.3541     | 3200     | 0.5267        | -                    | -                    | -                    | -                    | -                     |
| 0.3762     | 3400     | 0.5075        | -                    | -                    | -                    | -                    | -                     |
| 0.3983     | 3600     | 0.5312        | -                    | -                    | -                    | -                    | -                     |
| 0.4204     | 3800     | 0.4992        | -                    | -                    | -                    | -                    | -                     |
| 0.4426     | 4000     | 0.5019        | 0.8119 (+0.2207)     | 0.5021 (-0.0383)     | 0.3405 (+0.0155)     | 0.5255 (+0.0249)     | 0.4561 (+0.0007)      |
| 0.4647     | 4200     | 0.4957        | -                    | -                    | -                    | -                    | -                     |
| 0.4868     | 4400     | 0.5112        | -                    | -                    | -                    | -                    | -                     |
| 0.5090     | 4600     | 0.4992        | -                    | -                    | -                    | -                    | -                     |
| 0.5311     | 4800     | 0.4767        | -                    | -                    | -                    | -                    | -                     |
| 0.5532     | 5000     | 0.4854        | 0.8197 (+0.2284)     | 0.5562 (+0.0158)     | 0.3506 (+0.0256)     | 0.5767 (+0.0761)     | 0.4945 (+0.0392)      |
| 0.5753     | 5200     | 0.4834        | -                    | -                    | -                    | -                    | -                     |
| 0.5975     | 5400     | 0.4732        | -                    | -                    | -                    | -                    | -                     |
| 0.6196     | 5600     | 0.4757        | -                    | -                    | -                    | -                    | -                     |
| 0.6417     | 5800     | 0.4704        | -                    | -                    | -                    | -                    | -                     |
| 0.6639     | 6000     | 0.4632        | 0.8187 (+0.2275)     | 0.5322 (-0.0082)     | 0.3650 (+0.0399)     | 0.5871 (+0.0865)     | 0.4948 (+0.0394)      |
| 0.6860     | 6200     | 0.4492        | -                    | -                    | -                    | -                    | -                     |
| 0.7081     | 6400     | 0.4717        | -                    | -                    | -                    | -                    | -                     |
| 0.7303     | 6600     | 0.4639        | -                    | -                    | -                    | -                    | -                     |
| 0.7524     | 6800     | 0.465         | -                    | -                    | -                    | -                    | -                     |
| 0.7745     | 7000     | 0.4502        | 0.8261 (+0.2349)     | 0.5455 (+0.0050)     | 0.3540 (+0.0290)     | 0.6095 (+0.1089)     | 0.5030 (+0.0476)      |
| 0.7966     | 7200     | 0.4582        | -                    | -                    | -                    | -                    | -                     |
| 0.8188     | 7400     | 0.4628        | -                    | -                    | -                    | -                    | -                     |
| 0.8409     | 7600     | 0.4496        | -                    | -                    | -                    | -                    | -                     |
| 0.8630     | 7800     | 0.4571        | -                    | -                    | -                    | -                    | -                     |
| 0.8852     | 8000     | 0.4459        | 0.8239 (+0.2326)     | 0.5236 (-0.0168)     | 0.3571 (+0.0320)     | 0.5826 (+0.0819)     | 0.4878 (+0.0324)      |
| 0.9073     | 8200     | 0.457         | -                    | -                    | -                    | -                    | -                     |
| 0.9294     | 8400     | 0.4481        | -                    | -                    | -                    | -                    | -                     |
| 0.9515     | 8600     | 0.4515        | -                    | -                    | -                    | -                    | -                     |
| 0.9737     | 8800     | 0.4453        | -                    | -                    | -                    | -                    | -                     |
| **0.9958** | **9000** | **0.4566**    | **0.8269 (+0.2356)** | **0.5287 (-0.0117)** | **0.3612 (+0.0361)** | **0.5823 (+0.0817)** | **0.4907 (+0.0354)**  |
| -1         | -1       | -             | 0.8269 (+0.2356)     | 0.5287 (-0.0117)     | 0.3612 (+0.0361)     | 0.5823 (+0.0817)     | 0.4907 (+0.0354)      |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.6.0.dev20241112+cu121
- Accelerate: 1.2.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->