File size: 24,260 Bytes
ae27081 86e09ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
---
tags:
- sentence-transformers
- cross-encoder
- text-classification
- generated_from_trainer
- dataset_size:578402
- loss:BinaryCrossEntropyLoss
base_model: answerdotai/ModernBERT-base
pipeline_tag: text-classification
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on answerdotai/ModernBERT-base
results: []
---
# CrossEncoder based on answerdotai/ModernBERT-base
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
- **Maximum Sequence Length:** 8192 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("sentence_transformers_model_id")
# Get scores for pairs of texts
pairs = [
["how to obtain a teacher's certificate in texas?", '["Step 1: Obtain a Bachelor\'s Degree. One of the most important Texas teacher qualifications is a bachelor\'s degree. ... ", \'Step 2: Complete an Educator Preparation Program (EPP) ... \', \'Step 3: Pass Texas Teacher Certification Exams. ... \', \'Step 4: Complete a Final Application and Background Check.\']'],
["how to obtain a teacher's certificate in texas?", 'Teacher education programs may take 4 years to complete after which certification plans are prepared for a three year period. During this plan period, the teacher must obtain a Standard Certification within 1-2 years. Learn how to get certified to teach in Texas.'],
["how to obtain a teacher's certificate in texas?", "Washington Teachers Licensing Application Process Official transcripts showing proof of bachelor's degree. Proof of teacher program completion at an approved teacher preparation school. Passing scores on the required examinations. Completed application for teacher certification in Washington."],
["how to obtain a teacher's certificate in texas?", 'Some aspiring educators may be confused about the difference between teaching certification and teaching certificates. Teacher certification is another term for the licensure required to teach in public schools, while a teaching certificate is awarded upon completion of an academic program.'],
["how to obtain a teacher's certificate in texas?", 'In Texas, the minimum age to work is 14. Unlike some states, Texas does not require juvenile workers to obtain a child employment certificate or an age certificate to work. A prospective employer that wants one can request a certificate of age for any minors it employs, obtainable from the Texas Workforce Commission.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
"how to obtain a teacher's certificate in texas?",
[
'["Step 1: Obtain a Bachelor\'s Degree. One of the most important Texas teacher qualifications is a bachelor\'s degree. ... ", \'Step 2: Complete an Educator Preparation Program (EPP) ... \', \'Step 3: Pass Texas Teacher Certification Exams. ... \', \'Step 4: Complete a Final Application and Background Check.\']',
'Teacher education programs may take 4 years to complete after which certification plans are prepared for a three year period. During this plan period, the teacher must obtain a Standard Certification within 1-2 years. Learn how to get certified to teach in Texas.',
"Washington Teachers Licensing Application Process Official transcripts showing proof of bachelor's degree. Proof of teacher program completion at an approved teacher preparation school. Passing scores on the required examinations. Completed application for teacher certification in Washington.",
'Some aspiring educators may be confused about the difference between teaching certification and teaching certificates. Teacher certification is another term for the licensure required to teach in public schools, while a teaching certificate is awarded upon completion of an academic program.',
'In Texas, the minimum age to work is 14. Unlike some states, Texas does not require juvenile workers to obtain a child employment certificate or an age certificate to work. A prospective employer that wants one can request a certificate of age for any minors it employs, obtainable from the Texas Workforce Commission.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `gooaq-dev`, `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>CERerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator)
| Metric | gooaq-dev | NanoMSMARCO | NanoNFCorpus | NanoNQ |
|:------------|:---------------------|:---------------------|:---------------------|:---------------------|
| map | 0.7821 (+0.2485) | 0.4373 (-0.0523) | 0.3354 (+0.0650) | 0.5305 (+0.1098) |
| mrr@10 | 0.7800 (+0.2560) | 0.4288 (-0.0487) | 0.4934 (-0.0064) | 0.5326 (+0.1059) |
| **ndcg@10** | **0.8269 (+0.2356)** | **0.5287 (-0.0117)** | **0.3612 (+0.0361)** | **0.5823 (+0.0817)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>CENanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CENanoBEIREvaluator)
| Metric | Value |
|:------------|:---------------------|
| map | 0.4344 (+0.0408) |
| mrr@10 | 0.4849 (+0.0169) |
| **ndcg@10** | **0.4907 (+0.0354)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 578,402 training samples
* Columns: <code>question</code>, <code>answer</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer | label |
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 19 characters</li><li>mean: 43.6 characters</li><li>max: 100 characters</li></ul> | <ul><li>min: 56 characters</li><li>mean: 251.22 characters</li><li>max: 387 characters</li></ul> | <ul><li>0: ~82.90%</li><li>1: ~17.10%</li></ul> |
* Samples:
| question | answer | label |
|:-------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>how to obtain a teacher's certificate in texas?</code> | <code>["Step 1: Obtain a Bachelor's Degree. One of the most important Texas teacher qualifications is a bachelor's degree. ... ", 'Step 2: Complete an Educator Preparation Program (EPP) ... ', 'Step 3: Pass Texas Teacher Certification Exams. ... ', 'Step 4: Complete a Final Application and Background Check.']</code> | <code>1</code> |
| <code>how to obtain a teacher's certificate in texas?</code> | <code>Teacher education programs may take 4 years to complete after which certification plans are prepared for a three year period. During this plan period, the teacher must obtain a Standard Certification within 1-2 years. Learn how to get certified to teach in Texas.</code> | <code>0</code> |
| <code>how to obtain a teacher's certificate in texas?</code> | <code>Washington Teachers Licensing Application Process Official transcripts showing proof of bachelor's degree. Proof of teacher program completion at an approved teacher preparation school. Passing scores on the required examinations. Completed application for teacher certification in Washington.</code> | <code>0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fct": "torch.nn.modules.linear.Identity",
"pos_weight": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_ndcg@10 | NanoNFCorpus_ndcg@10 | NanoNQ_ndcg@10 | NanoBEIR_mean_ndcg@10 |
|:----------:|:--------:|:-------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------:|:---------------------:|
| -1 | -1 | - | 0.1541 (-0.4371) | 0.0273 (-0.5131) | 0.3068 (-0.0182) | 0.0340 (-0.4666) | 0.1227 (-0.3326) |
| 0.0001 | 1 | 1.3693 | - | - | - | - | - |
| 0.0221 | 200 | 1.1942 | - | - | - | - | - |
| 0.0443 | 400 | 1.1542 | - | - | - | - | - |
| 0.0664 | 600 | 0.9421 | - | - | - | - | - |
| 0.0885 | 800 | 0.7253 | - | - | - | - | - |
| 0.1106 | 1000 | 0.6955 | 0.7578 (+0.1666) | 0.4930 (-0.0474) | 0.3038 (-0.0212) | 0.6047 (+0.1040) | 0.4672 (+0.0118) |
| 0.1328 | 1200 | 0.6236 | - | - | - | - | - |
| 0.1549 | 1400 | 0.6155 | - | - | - | - | - |
| 0.1770 | 1600 | 0.6102 | - | - | - | - | - |
| 0.1992 | 1800 | 0.5621 | - | - | - | - | - |
| 0.2213 | 2000 | 0.571 | 0.7910 (+0.1998) | 0.5230 (-0.0174) | 0.3468 (+0.0217) | 0.5689 (+0.0683) | 0.4796 (+0.0242) |
| 0.2434 | 2200 | 0.5575 | - | - | - | - | - |
| 0.2655 | 2400 | 0.5539 | - | - | - | - | - |
| 0.2877 | 2600 | 0.5507 | - | - | - | - | - |
| 0.3098 | 2800 | 0.5483 | - | - | - | - | - |
| 0.3319 | 3000 | 0.5204 | 0.8089 (+0.2177) | 0.5283 (-0.0121) | 0.3413 (+0.0162) | 0.5783 (+0.0776) | 0.4826 (+0.0272) |
| 0.3541 | 3200 | 0.5267 | - | - | - | - | - |
| 0.3762 | 3400 | 0.5075 | - | - | - | - | - |
| 0.3983 | 3600 | 0.5312 | - | - | - | - | - |
| 0.4204 | 3800 | 0.4992 | - | - | - | - | - |
| 0.4426 | 4000 | 0.5019 | 0.8119 (+0.2207) | 0.5021 (-0.0383) | 0.3405 (+0.0155) | 0.5255 (+0.0249) | 0.4561 (+0.0007) |
| 0.4647 | 4200 | 0.4957 | - | - | - | - | - |
| 0.4868 | 4400 | 0.5112 | - | - | - | - | - |
| 0.5090 | 4600 | 0.4992 | - | - | - | - | - |
| 0.5311 | 4800 | 0.4767 | - | - | - | - | - |
| 0.5532 | 5000 | 0.4854 | 0.8197 (+0.2284) | 0.5562 (+0.0158) | 0.3506 (+0.0256) | 0.5767 (+0.0761) | 0.4945 (+0.0392) |
| 0.5753 | 5200 | 0.4834 | - | - | - | - | - |
| 0.5975 | 5400 | 0.4732 | - | - | - | - | - |
| 0.6196 | 5600 | 0.4757 | - | - | - | - | - |
| 0.6417 | 5800 | 0.4704 | - | - | - | - | - |
| 0.6639 | 6000 | 0.4632 | 0.8187 (+0.2275) | 0.5322 (-0.0082) | 0.3650 (+0.0399) | 0.5871 (+0.0865) | 0.4948 (+0.0394) |
| 0.6860 | 6200 | 0.4492 | - | - | - | - | - |
| 0.7081 | 6400 | 0.4717 | - | - | - | - | - |
| 0.7303 | 6600 | 0.4639 | - | - | - | - | - |
| 0.7524 | 6800 | 0.465 | - | - | - | - | - |
| 0.7745 | 7000 | 0.4502 | 0.8261 (+0.2349) | 0.5455 (+0.0050) | 0.3540 (+0.0290) | 0.6095 (+0.1089) | 0.5030 (+0.0476) |
| 0.7966 | 7200 | 0.4582 | - | - | - | - | - |
| 0.8188 | 7400 | 0.4628 | - | - | - | - | - |
| 0.8409 | 7600 | 0.4496 | - | - | - | - | - |
| 0.8630 | 7800 | 0.4571 | - | - | - | - | - |
| 0.8852 | 8000 | 0.4459 | 0.8239 (+0.2326) | 0.5236 (-0.0168) | 0.3571 (+0.0320) | 0.5826 (+0.0819) | 0.4878 (+0.0324) |
| 0.9073 | 8200 | 0.457 | - | - | - | - | - |
| 0.9294 | 8400 | 0.4481 | - | - | - | - | - |
| 0.9515 | 8600 | 0.4515 | - | - | - | - | - |
| 0.9737 | 8800 | 0.4453 | - | - | - | - | - |
| **0.9958** | **9000** | **0.4566** | **0.8269 (+0.2356)** | **0.5287 (-0.0117)** | **0.3612 (+0.0361)** | **0.5823 (+0.0817)** | **0.4907 (+0.0354)** |
| -1 | -1 | - | 0.8269 (+0.2356) | 0.5287 (-0.0117) | 0.3612 (+0.0361) | 0.5823 (+0.0817) | 0.4907 (+0.0354) |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.6.0.dev20241112+cu121
- Accelerate: 1.2.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |