--- language: - en license: apache-2.0 library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - sst2 metrics: - precision - recall - f1 widget: - text: 'this is a story of two misfits who do n''t stand a chance alone , but together they are magnificent . ' - text: 'it does n''t believe in itself , it has no sense of humor ... it ''s just plain bored . ' - text: 'the band ''s courage in the face of official repression is inspiring , especially for aging hippies ( this one included ) . ' - text: 'a fast , funny , highly enjoyable movie . ' - text: 'the movie achieves as great an impact by keeping these thoughts hidden as ... ( quills ) did by showing them . ' pipeline_tag: text-classification co2_eq_emissions: emissions: 2.768308759172054 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.072 hardware_used: 1 x NVIDIA GeForce RTX 3090 base_model: sentence-transformers/all-MiniLM-L6-v2 model-index: - name: SetFit with sentence-transformers/all-MiniLM-L6-v2 on sst2 results: - task: type: text-classification name: Text Classification dataset: name: sst2 type: sst2 split: test metrics: - type: accuracy value: 0.7512953367875648 name: Accuracy --- # SetFit with sentence-transformers/all-MiniLM-L6-v2 on sst2 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [sst2](https://huggingface.co/datasets/sst2) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [sst2](https://huggingface.co/datasets/sst2) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | | | positive | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7513 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from 🤗 Hub model = SetFitModel.from_pretrained("tomaarsen/setfit-all-MiniLM-L6-v2-sst2-8-shot") # Run inference preds = model("a fast , funny , highly enjoyable movie . ") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 2 | 10.2812 | 36 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 32 | | positive | 32 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:----------:|:------:|:-------------:|:---------------:| | 0.0076 | 1 | 0.3787 | - | | 0.0758 | 10 | 0.2855 | - | | 0.1515 | 20 | 0.3458 | 0.29 | | 0.2273 | 30 | 0.2496 | - | | 0.3030 | 40 | 0.2398 | 0.2482 | | 0.3788 | 50 | 0.2068 | - | | 0.4545 | 60 | 0.2471 | 0.244 | | 0.5303 | 70 | 0.2053 | - | | **0.6061** | **80** | **0.1802** | **0.2361** | | 0.6818 | 90 | 0.0767 | - | | 0.7576 | 100 | 0.0279 | 0.2365 | | 0.8333 | 110 | 0.0192 | - | | 0.9091 | 120 | 0.0095 | 0.2527 | | 0.9848 | 130 | 0.0076 | - | | 1.0606 | 140 | 0.0082 | 0.2651 | | 1.1364 | 150 | 0.0068 | - | | 1.2121 | 160 | 0.0052 | 0.2722 | | 1.2879 | 170 | 0.0029 | - | | 1.3636 | 180 | 0.0042 | 0.273 | | 1.4394 | 190 | 0.0026 | - | | 1.5152 | 200 | 0.0036 | 0.2761 | | 1.5909 | 210 | 0.0044 | - | | 1.6667 | 220 | 0.0027 | 0.2796 | | 1.7424 | 230 | 0.0025 | - | | 1.8182 | 240 | 0.0025 | 0.2817 | | 1.8939 | 250 | 0.003 | - | | 1.9697 | 260 | 0.0026 | 0.2817 | | 2.0455 | 270 | 0.0035 | - | | 2.1212 | 280 | 0.002 | 0.2816 | | 2.1970 | 290 | 0.0023 | - | | 2.2727 | 300 | 0.0016 | 0.2821 | | 2.3485 | 310 | 0.0023 | - | | 2.4242 | 320 | 0.0015 | 0.2838 | | 2.5 | 330 | 0.0014 | - | | 2.5758 | 340 | 0.002 | 0.2842 | | 2.6515 | 350 | 0.002 | - | | 2.7273 | 360 | 0.0013 | 0.2847 | | 2.8030 | 370 | 0.0009 | - | | 2.8788 | 380 | 0.0018 | 0.2857 | | 2.9545 | 390 | 0.0016 | - | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.003 kg of CO2 - **Hours Used**: 0.072 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.9.16 - SetFit: 1.0.0.dev0 - Sentence Transformers: 2.2.2 - Transformers: 4.29.0 - PyTorch: 1.13.1+cu117 - Datasets: 2.15.0 - Tokenizers: 0.13.3 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```