File size: 3,068 Bytes
e134839
 
 
 
 
 
 
 
 
 
cec1de4
 
 
c4cd982
cec1de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e134839
 
 
 
cec1de4
 
 
e134839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec1de4
e134839
 
 
 
c4cd982
 
 
 
 
 
 
 
 
 
 
 
 
 
e134839
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

---
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
pipeline_tag: token-classification
widget:
  - text: >-
      Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic
      to Paris .
    example_title: Amelia Earhart
model-index:
  - name: >-
      SpanMarker w. xlm-roberta-large on CoNLL++ with document-level context by Tom Aarsen
    results:
      - task:
          type: token-classification
          name: Named Entity Recognition
        dataset:
          type: conllpp
          name: CoNLL++ w. document context
          split: test
          revision: 3e6012875a688903477cca9bf1ba644e65480bd6
        metrics:
          - type: f1
            value: 0.9554
            name: F1
          - type: precision
            value: 0.9600
            name: Precision
          - type: recall
            value: 0.9509
            name: Recall
datasets:
  - conllpp
  - tomaarsen/conllpp
language:
  - en
metrics:
  - f1
  - recall
  - precision
---

# SpanMarker for Named Entity Recognition

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) as the underlying encoder. See [train.py](train.py) for the training script.
Note that this model was trained with document-level context, i.e. it will primarily perform well when provided with enough context. It is recommended to call `model.predict` with a 🤗 Dataset with `tokens`, `document_id` and `sentence_id` columns.
See the [documentation](https://tomaarsen.github.io/SpanMarkerNER/api/span_marker.modeling.html#span_marker.modeling.SpanMarkerModel.predict) of the `model.predict` method for more information.

## Usage

To use this model for inference, first install the `span_marker` library:

```bash
pip install span_marker
```

You can then run inference with this model like so:

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-large-conllpp-doc-context")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```

### Limitations

**Warning**: This model works best when punctuation is separated from the prior words, so 
```python
# ✅
model.predict("He plays J. Robert Oppenheimer , an American theoretical physicist .")
# ❌
model.predict("He plays J. Robert Oppenheimer, an American theoretical physicist.")

# You can also supply a list of words directly: ✅
model.predict(["He", "plays", "J.", "Robert", "Oppenheimer", ",", "an", "American", "theoretical", "physicist", "."])
```
The same may be beneficial for some languages, such as splitting `"l'ocean Atlantique"` into `"l' ocean Atlantique"`.

See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.