Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +902 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,902 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- loss:MultipleNegativesRankingLoss
|
10 |
+
- loss:ContrastiveLoss
|
11 |
+
base_model: sentence-transformers/stsb-distilbert-base
|
12 |
+
metrics:
|
13 |
+
- cosine_accuracy
|
14 |
+
- cosine_accuracy_threshold
|
15 |
+
- cosine_f1
|
16 |
+
- cosine_f1_threshold
|
17 |
+
- cosine_precision
|
18 |
+
- cosine_recall
|
19 |
+
- cosine_ap
|
20 |
+
- dot_accuracy
|
21 |
+
- dot_accuracy_threshold
|
22 |
+
- dot_f1
|
23 |
+
- dot_f1_threshold
|
24 |
+
- dot_precision
|
25 |
+
- dot_recall
|
26 |
+
- dot_ap
|
27 |
+
- manhattan_accuracy
|
28 |
+
- manhattan_accuracy_threshold
|
29 |
+
- manhattan_f1
|
30 |
+
- manhattan_f1_threshold
|
31 |
+
- manhattan_precision
|
32 |
+
- manhattan_recall
|
33 |
+
- manhattan_ap
|
34 |
+
- euclidean_accuracy
|
35 |
+
- euclidean_accuracy_threshold
|
36 |
+
- euclidean_f1
|
37 |
+
- euclidean_f1_threshold
|
38 |
+
- euclidean_precision
|
39 |
+
- euclidean_recall
|
40 |
+
- euclidean_ap
|
41 |
+
- max_accuracy
|
42 |
+
- max_accuracy_threshold
|
43 |
+
- max_f1
|
44 |
+
- max_f1_threshold
|
45 |
+
- max_precision
|
46 |
+
- max_recall
|
47 |
+
- max_ap
|
48 |
+
- average_precision
|
49 |
+
- f1
|
50 |
+
- precision
|
51 |
+
- recall
|
52 |
+
- threshold
|
53 |
+
- cosine_accuracy@1
|
54 |
+
- cosine_accuracy@3
|
55 |
+
- cosine_accuracy@5
|
56 |
+
- cosine_accuracy@10
|
57 |
+
- cosine_precision@1
|
58 |
+
- cosine_precision@3
|
59 |
+
- cosine_precision@5
|
60 |
+
- cosine_precision@10
|
61 |
+
- cosine_recall@1
|
62 |
+
- cosine_recall@3
|
63 |
+
- cosine_recall@5
|
64 |
+
- cosine_recall@10
|
65 |
+
- cosine_ndcg@10
|
66 |
+
- cosine_mrr@10
|
67 |
+
- cosine_map@100
|
68 |
+
- dot_accuracy@1
|
69 |
+
- dot_accuracy@3
|
70 |
+
- dot_accuracy@5
|
71 |
+
- dot_accuracy@10
|
72 |
+
- dot_precision@1
|
73 |
+
- dot_precision@3
|
74 |
+
- dot_precision@5
|
75 |
+
- dot_precision@10
|
76 |
+
- dot_recall@1
|
77 |
+
- dot_recall@3
|
78 |
+
- dot_recall@5
|
79 |
+
- dot_recall@10
|
80 |
+
- dot_ndcg@10
|
81 |
+
- dot_mrr@10
|
82 |
+
- dot_map@100
|
83 |
+
widget:
|
84 |
+
- source_sentence: What is Mindset?
|
85 |
+
sentences:
|
86 |
+
- What is a mindset?
|
87 |
+
- Can you eat only once a day?
|
88 |
+
- Is law a good career choice?
|
89 |
+
- source_sentence: Is a queef real?
|
90 |
+
sentences:
|
91 |
+
- Is "G" based on real events?
|
92 |
+
- What is the entire court process?
|
93 |
+
- How do I reduce my weight?
|
94 |
+
- source_sentence: Is Cicret a scam?
|
95 |
+
sentences:
|
96 |
+
- Is the Cicret Bracelet a scam?
|
97 |
+
- Was World War II Inevitable?
|
98 |
+
- What are some of the best photos?
|
99 |
+
- source_sentence: What is Planet X?
|
100 |
+
sentences:
|
101 |
+
- Do planet X exist?
|
102 |
+
- What are the best C++ books?
|
103 |
+
- How can I lose my weight fast?
|
104 |
+
- source_sentence: How fast is fast?
|
105 |
+
sentences:
|
106 |
+
- How does light travel so fast?
|
107 |
+
- How do I copyright my books?
|
108 |
+
- What is a black hole made of?
|
109 |
+
pipeline_tag: sentence-similarity
|
110 |
+
co2_eq_emissions:
|
111 |
+
emissions: 32.724475965905576
|
112 |
+
energy_consumed: 0.08418911136527617
|
113 |
+
source: codecarbon
|
114 |
+
training_type: fine-tuning
|
115 |
+
on_cloud: false
|
116 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
117 |
+
ram_total_size: 31.777088165283203
|
118 |
+
hours_used: 0.399
|
119 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
120 |
+
model-index:
|
121 |
+
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
|
122 |
+
results:
|
123 |
+
- task:
|
124 |
+
type: binary-classification
|
125 |
+
name: Binary Classification
|
126 |
+
dataset:
|
127 |
+
name: quora duplicates
|
128 |
+
type: quora-duplicates
|
129 |
+
metrics:
|
130 |
+
- type: cosine_accuracy
|
131 |
+
value: 0.846
|
132 |
+
name: Cosine Accuracy
|
133 |
+
- type: cosine_accuracy_threshold
|
134 |
+
value: 0.7969297170639038
|
135 |
+
name: Cosine Accuracy Threshold
|
136 |
+
- type: cosine_f1
|
137 |
+
value: 0.7791495198902607
|
138 |
+
name: Cosine F1
|
139 |
+
- type: cosine_f1_threshold
|
140 |
+
value: 0.7139598727226257
|
141 |
+
name: Cosine F1 Threshold
|
142 |
+
- type: cosine_precision
|
143 |
+
value: 0.6977886977886978
|
144 |
+
name: Cosine Precision
|
145 |
+
- type: cosine_recall
|
146 |
+
value: 0.8819875776397516
|
147 |
+
name: Cosine Recall
|
148 |
+
- type: cosine_ap
|
149 |
+
value: 0.8230449963294564
|
150 |
+
name: Cosine Ap
|
151 |
+
- type: dot_accuracy
|
152 |
+
value: 0.843
|
153 |
+
name: Dot Accuracy
|
154 |
+
- type: dot_accuracy_threshold
|
155 |
+
value: 151.2908477783203
|
156 |
+
name: Dot Accuracy Threshold
|
157 |
+
- type: dot_f1
|
158 |
+
value: 0.7660818713450294
|
159 |
+
name: Dot F1
|
160 |
+
- type: dot_f1_threshold
|
161 |
+
value: 143.77838134765625
|
162 |
+
name: Dot F1 Threshold
|
163 |
+
- type: dot_precision
|
164 |
+
value: 0.7237569060773481
|
165 |
+
name: Dot Precision
|
166 |
+
- type: dot_recall
|
167 |
+
value: 0.8136645962732919
|
168 |
+
name: Dot Recall
|
169 |
+
- type: dot_ap
|
170 |
+
value: 0.7946044629726107
|
171 |
+
name: Dot Ap
|
172 |
+
- type: manhattan_accuracy
|
173 |
+
value: 0.838
|
174 |
+
name: Manhattan Accuracy
|
175 |
+
- type: manhattan_accuracy_threshold
|
176 |
+
value: 194.99119567871094
|
177 |
+
name: Manhattan Accuracy Threshold
|
178 |
+
- type: manhattan_f1
|
179 |
+
value: 0.7704081632653061
|
180 |
+
name: Manhattan F1
|
181 |
+
- type: manhattan_f1_threshold
|
182 |
+
value: 247.49777221679688
|
183 |
+
name: Manhattan F1 Threshold
|
184 |
+
- type: manhattan_precision
|
185 |
+
value: 0.6536796536796536
|
186 |
+
name: Manhattan Precision
|
187 |
+
- type: manhattan_recall
|
188 |
+
value: 0.937888198757764
|
189 |
+
name: Manhattan Recall
|
190 |
+
- type: manhattan_ap
|
191 |
+
value: 0.8149715271935773
|
192 |
+
name: Manhattan Ap
|
193 |
+
- type: euclidean_accuracy
|
194 |
+
value: 0.841
|
195 |
+
name: Euclidean Accuracy
|
196 |
+
- type: euclidean_accuracy_threshold
|
197 |
+
value: 9.02225112915039
|
198 |
+
name: Euclidean Accuracy Threshold
|
199 |
+
- type: euclidean_f1
|
200 |
+
value: 0.7703889585947302
|
201 |
+
name: Euclidean F1
|
202 |
+
- type: euclidean_f1_threshold
|
203 |
+
value: 11.385245323181152
|
204 |
+
name: Euclidean F1 Threshold
|
205 |
+
- type: euclidean_precision
|
206 |
+
value: 0.6463157894736842
|
207 |
+
name: Euclidean Precision
|
208 |
+
- type: euclidean_recall
|
209 |
+
value: 0.953416149068323
|
210 |
+
name: Euclidean Recall
|
211 |
+
- type: euclidean_ap
|
212 |
+
value: 0.8152967320117391
|
213 |
+
name: Euclidean Ap
|
214 |
+
- type: max_accuracy
|
215 |
+
value: 0.846
|
216 |
+
name: Max Accuracy
|
217 |
+
- type: max_accuracy_threshold
|
218 |
+
value: 194.99119567871094
|
219 |
+
name: Max Accuracy Threshold
|
220 |
+
- type: max_f1
|
221 |
+
value: 0.7791495198902607
|
222 |
+
name: Max F1
|
223 |
+
- type: max_f1_threshold
|
224 |
+
value: 247.49777221679688
|
225 |
+
name: Max F1 Threshold
|
226 |
+
- type: max_precision
|
227 |
+
value: 0.7237569060773481
|
228 |
+
name: Max Precision
|
229 |
+
- type: max_recall
|
230 |
+
value: 0.953416149068323
|
231 |
+
name: Max Recall
|
232 |
+
- type: max_ap
|
233 |
+
value: 0.8230449963294564
|
234 |
+
name: Max Ap
|
235 |
+
- task:
|
236 |
+
type: paraphrase-mining
|
237 |
+
name: Paraphrase Mining
|
238 |
+
dataset:
|
239 |
+
name: quora duplicates dev
|
240 |
+
type: quora-duplicates-dev
|
241 |
+
metrics:
|
242 |
+
- type: average_precision
|
243 |
+
value: 0.5888649029434471
|
244 |
+
name: Average Precision
|
245 |
+
- type: f1
|
246 |
+
value: 0.5761652140962487
|
247 |
+
name: F1
|
248 |
+
- type: precision
|
249 |
+
value: 0.5477552123204396
|
250 |
+
name: Precision
|
251 |
+
- type: recall
|
252 |
+
value: 0.6076834690513064
|
253 |
+
name: Recall
|
254 |
+
- type: threshold
|
255 |
+
value: 0.7728720009326935
|
256 |
+
name: Threshold
|
257 |
+
- task:
|
258 |
+
type: information-retrieval
|
259 |
+
name: Information Retrieval
|
260 |
+
dataset:
|
261 |
+
name: Unknown
|
262 |
+
type: unknown
|
263 |
+
metrics:
|
264 |
+
- type: cosine_accuracy@1
|
265 |
+
value: 0.963
|
266 |
+
name: Cosine Accuracy@1
|
267 |
+
- type: cosine_accuracy@3
|
268 |
+
value: 0.9906
|
269 |
+
name: Cosine Accuracy@3
|
270 |
+
- type: cosine_accuracy@5
|
271 |
+
value: 0.9944
|
272 |
+
name: Cosine Accuracy@5
|
273 |
+
- type: cosine_accuracy@10
|
274 |
+
value: 0.9982
|
275 |
+
name: Cosine Accuracy@10
|
276 |
+
- type: cosine_precision@1
|
277 |
+
value: 0.963
|
278 |
+
name: Cosine Precision@1
|
279 |
+
- type: cosine_precision@3
|
280 |
+
value: 0.4285333333333333
|
281 |
+
name: Cosine Precision@3
|
282 |
+
- type: cosine_precision@5
|
283 |
+
value: 0.27568000000000004
|
284 |
+
name: Cosine Precision@5
|
285 |
+
- type: cosine_precision@10
|
286 |
+
value: 0.14494
|
287 |
+
name: Cosine Precision@10
|
288 |
+
- type: cosine_recall@1
|
289 |
+
value: 0.8299562338609103
|
290 |
+
name: Cosine Recall@1
|
291 |
+
- type: cosine_recall@3
|
292 |
+
value: 0.9590366552956846
|
293 |
+
name: Cosine Recall@3
|
294 |
+
- type: cosine_recall@5
|
295 |
+
value: 0.9806221849555673
|
296 |
+
name: Cosine Recall@5
|
297 |
+
- type: cosine_recall@10
|
298 |
+
value: 0.9925738410935468
|
299 |
+
name: Cosine Recall@10
|
300 |
+
- type: cosine_ndcg@10
|
301 |
+
value: 0.9784033087450696
|
302 |
+
name: Cosine Ndcg@10
|
303 |
+
- type: cosine_mrr@10
|
304 |
+
value: 0.9771579365079368
|
305 |
+
name: Cosine Mrr@10
|
306 |
+
- type: cosine_map@100
|
307 |
+
value: 0.9709189650394419
|
308 |
+
name: Cosine Map@100
|
309 |
+
- type: dot_accuracy@1
|
310 |
+
value: 0.9514
|
311 |
+
name: Dot Accuracy@1
|
312 |
+
- type: dot_accuracy@3
|
313 |
+
value: 0.9852
|
314 |
+
name: Dot Accuracy@3
|
315 |
+
- type: dot_accuracy@5
|
316 |
+
value: 0.991
|
317 |
+
name: Dot Accuracy@5
|
318 |
+
- type: dot_accuracy@10
|
319 |
+
value: 0.9968
|
320 |
+
name: Dot Accuracy@10
|
321 |
+
- type: dot_precision@1
|
322 |
+
value: 0.9514
|
323 |
+
name: Dot Precision@1
|
324 |
+
- type: dot_precision@3
|
325 |
+
value: 0.4247333333333334
|
326 |
+
name: Dot Precision@3
|
327 |
+
- type: dot_precision@5
|
328 |
+
value: 0.27364
|
329 |
+
name: Dot Precision@5
|
330 |
+
- type: dot_precision@10
|
331 |
+
value: 0.14458000000000001
|
332 |
+
name: Dot Precision@10
|
333 |
+
- type: dot_recall@1
|
334 |
+
value: 0.8194380520427287
|
335 |
+
name: Dot Recall@1
|
336 |
+
- type: dot_recall@3
|
337 |
+
value: 0.9520212390452685
|
338 |
+
name: Dot Recall@3
|
339 |
+
- type: dot_recall@5
|
340 |
+
value: 0.9755502441186265
|
341 |
+
name: Dot Recall@5
|
342 |
+
- type: dot_recall@10
|
343 |
+
value: 0.9910547306614953
|
344 |
+
name: Dot Recall@10
|
345 |
+
- type: dot_ndcg@10
|
346 |
+
value: 0.9715023430522326
|
347 |
+
name: Dot Ndcg@10
|
348 |
+
- type: dot_mrr@10
|
349 |
+
value: 0.9692583333333334
|
350 |
+
name: Dot Mrr@10
|
351 |
+
- type: dot_map@100
|
352 |
+
value: 0.961739772177385
|
353 |
+
name: Dot Map@100
|
354 |
+
---
|
355 |
+
|
356 |
+
# SentenceTransformer based on sentence-transformers/stsb-distilbert-base
|
357 |
+
|
358 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
359 |
+
|
360 |
+
## Model Details
|
361 |
+
|
362 |
+
### Model Description
|
363 |
+
- **Model Type:** Sentence Transformer
|
364 |
+
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision 82ad392c08f81be9be9bf065339670b23f2e1493 -->
|
365 |
+
- **Maximum Sequence Length:** 128 tokens
|
366 |
+
- **Output Dimensionality:** 768 tokens
|
367 |
+
- **Similarity Function:** Cosine Similarity
|
368 |
+
- **Training Datasets:**
|
369 |
+
- [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
|
370 |
+
- [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
|
371 |
+
- **Language:** en
|
372 |
+
<!-- - **License:** Unknown -->
|
373 |
+
|
374 |
+
### Model Sources
|
375 |
+
|
376 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
377 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
378 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
379 |
+
|
380 |
+
### Full Model Architecture
|
381 |
+
|
382 |
+
```
|
383 |
+
SentenceTransformer(
|
384 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
385 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
386 |
+
)
|
387 |
+
```
|
388 |
+
|
389 |
+
## Usage
|
390 |
+
|
391 |
+
### Direct Usage (Sentence Transformers)
|
392 |
+
|
393 |
+
First install the Sentence Transformers library:
|
394 |
+
|
395 |
+
```bash
|
396 |
+
pip install -U sentence-transformers
|
397 |
+
```
|
398 |
+
|
399 |
+
Then you can load this model and run inference.
|
400 |
+
```python
|
401 |
+
from sentence_transformers import SentenceTransformer
|
402 |
+
|
403 |
+
# Download from the 🤗 Hub
|
404 |
+
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl-cl-multi")
|
405 |
+
# Run inference
|
406 |
+
sentences = [
|
407 |
+
'How fast is fast?',
|
408 |
+
'How does light travel so fast?',
|
409 |
+
'How do I copyright my books?',
|
410 |
+
]
|
411 |
+
embeddings = model.encode(sentences)
|
412 |
+
print(embeddings.shape)
|
413 |
+
# [3, 768]
|
414 |
+
|
415 |
+
# Get the similarity scores for the embeddings
|
416 |
+
similarities = model.similarity(embeddings)
|
417 |
+
print(similarities.shape)
|
418 |
+
# [3, 3]
|
419 |
+
```
|
420 |
+
|
421 |
+
<!--
|
422 |
+
### Direct Usage (Transformers)
|
423 |
+
|
424 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
425 |
+
|
426 |
+
</details>
|
427 |
+
-->
|
428 |
+
|
429 |
+
<!--
|
430 |
+
### Downstream Usage (Sentence Transformers)
|
431 |
+
|
432 |
+
You can finetune this model on your own dataset.
|
433 |
+
|
434 |
+
<details><summary>Click to expand</summary>
|
435 |
+
|
436 |
+
</details>
|
437 |
+
-->
|
438 |
+
|
439 |
+
<!--
|
440 |
+
### Out-of-Scope Use
|
441 |
+
|
442 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
443 |
+
-->
|
444 |
+
|
445 |
+
## Evaluation
|
446 |
+
|
447 |
+
### Metrics
|
448 |
+
|
449 |
+
#### Binary Classification
|
450 |
+
* Dataset: `quora-duplicates`
|
451 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
452 |
+
|
453 |
+
| Metric | Value |
|
454 |
+
|:-----------------------------|:----------|
|
455 |
+
| cosine_accuracy | 0.846 |
|
456 |
+
| cosine_accuracy_threshold | 0.7969 |
|
457 |
+
| cosine_f1 | 0.7791 |
|
458 |
+
| cosine_f1_threshold | 0.714 |
|
459 |
+
| cosine_precision | 0.6978 |
|
460 |
+
| cosine_recall | 0.882 |
|
461 |
+
| cosine_ap | 0.823 |
|
462 |
+
| dot_accuracy | 0.843 |
|
463 |
+
| dot_accuracy_threshold | 151.2908 |
|
464 |
+
| dot_f1 | 0.7661 |
|
465 |
+
| dot_f1_threshold | 143.7784 |
|
466 |
+
| dot_precision | 0.7238 |
|
467 |
+
| dot_recall | 0.8137 |
|
468 |
+
| dot_ap | 0.7946 |
|
469 |
+
| manhattan_accuracy | 0.838 |
|
470 |
+
| manhattan_accuracy_threshold | 194.9912 |
|
471 |
+
| manhattan_f1 | 0.7704 |
|
472 |
+
| manhattan_f1_threshold | 247.4978 |
|
473 |
+
| manhattan_precision | 0.6537 |
|
474 |
+
| manhattan_recall | 0.9379 |
|
475 |
+
| manhattan_ap | 0.815 |
|
476 |
+
| euclidean_accuracy | 0.841 |
|
477 |
+
| euclidean_accuracy_threshold | 9.0223 |
|
478 |
+
| euclidean_f1 | 0.7704 |
|
479 |
+
| euclidean_f1_threshold | 11.3852 |
|
480 |
+
| euclidean_precision | 0.6463 |
|
481 |
+
| euclidean_recall | 0.9534 |
|
482 |
+
| euclidean_ap | 0.8153 |
|
483 |
+
| max_accuracy | 0.846 |
|
484 |
+
| max_accuracy_threshold | 194.9912 |
|
485 |
+
| max_f1 | 0.7791 |
|
486 |
+
| max_f1_threshold | 247.4978 |
|
487 |
+
| max_precision | 0.7238 |
|
488 |
+
| max_recall | 0.9534 |
|
489 |
+
| **max_ap** | **0.823** |
|
490 |
+
|
491 |
+
#### Paraphrase Mining
|
492 |
+
* Dataset: `quora-duplicates-dev`
|
493 |
+
* Evaluated with [<code>ParaphraseMiningEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator)
|
494 |
+
|
495 |
+
| Metric | Value |
|
496 |
+
|:----------------------|:-----------|
|
497 |
+
| **average_precision** | **0.5889** |
|
498 |
+
| f1 | 0.5762 |
|
499 |
+
| precision | 0.5478 |
|
500 |
+
| recall | 0.6077 |
|
501 |
+
| threshold | 0.7729 |
|
502 |
+
|
503 |
+
#### Information Retrieval
|
504 |
+
|
505 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
506 |
+
|
507 |
+
| Metric | Value |
|
508 |
+
|:--------------------|:-----------|
|
509 |
+
| cosine_accuracy@1 | 0.963 |
|
510 |
+
| cosine_accuracy@3 | 0.9906 |
|
511 |
+
| cosine_accuracy@5 | 0.9944 |
|
512 |
+
| cosine_accuracy@10 | 0.9982 |
|
513 |
+
| cosine_precision@1 | 0.963 |
|
514 |
+
| cosine_precision@3 | 0.4285 |
|
515 |
+
| cosine_precision@5 | 0.2757 |
|
516 |
+
| cosine_precision@10 | 0.1449 |
|
517 |
+
| cosine_recall@1 | 0.83 |
|
518 |
+
| cosine_recall@3 | 0.959 |
|
519 |
+
| cosine_recall@5 | 0.9806 |
|
520 |
+
| cosine_recall@10 | 0.9926 |
|
521 |
+
| cosine_ndcg@10 | 0.9784 |
|
522 |
+
| cosine_mrr@10 | 0.9772 |
|
523 |
+
| **cosine_map@100** | **0.9709** |
|
524 |
+
| dot_accuracy@1 | 0.9514 |
|
525 |
+
| dot_accuracy@3 | 0.9852 |
|
526 |
+
| dot_accuracy@5 | 0.991 |
|
527 |
+
| dot_accuracy@10 | 0.9968 |
|
528 |
+
| dot_precision@1 | 0.9514 |
|
529 |
+
| dot_precision@3 | 0.4247 |
|
530 |
+
| dot_precision@5 | 0.2736 |
|
531 |
+
| dot_precision@10 | 0.1446 |
|
532 |
+
| dot_recall@1 | 0.8194 |
|
533 |
+
| dot_recall@3 | 0.952 |
|
534 |
+
| dot_recall@5 | 0.9756 |
|
535 |
+
| dot_recall@10 | 0.9911 |
|
536 |
+
| dot_ndcg@10 | 0.9715 |
|
537 |
+
| dot_mrr@10 | 0.9693 |
|
538 |
+
| dot_map@100 | 0.9617 |
|
539 |
+
|
540 |
+
<!--
|
541 |
+
## Bias, Risks and Limitations
|
542 |
+
|
543 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
544 |
+
-->
|
545 |
+
|
546 |
+
<!--
|
547 |
+
### Recommendations
|
548 |
+
|
549 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
550 |
+
-->
|
551 |
+
|
552 |
+
## Training Details
|
553 |
+
|
554 |
+
### Training Datasets
|
555 |
+
|
556 |
+
#### mnrl
|
557 |
+
|
558 |
+
* Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
559 |
+
* Size: 100,000 training samples
|
560 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
561 |
+
* Approximate statistics based on the first 1000 samples:
|
562 |
+
| | anchor | positive | negative |
|
563 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
564 |
+
| type | string | string | string |
|
565 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 13.85 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.65 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.76 tokens</li><li>max: 64 tokens</li></ul> |
|
566 |
+
* Samples:
|
567 |
+
| anchor | positive | negative |
|
568 |
+
|:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|
|
569 |
+
| <code>Why in India do we not have one on one political debate as in USA?</code> | <code>Why cant we have a public debate between politicians in India like the one in US?</code> | <code>Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?</code> |
|
570 |
+
| <code>What is OnePlus One?</code> | <code>How is oneplus one?</code> | <code>Why is OnePlus One so good?</code> |
|
571 |
+
| <code>Does our mind control our emotions?</code> | <code>How do smart and successful people control their emotions?</code> | <code>How can I control my positive emotions for the people whom I love but they don't care about me?</code> |
|
572 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
|
573 |
+
```json
|
574 |
+
{
|
575 |
+
"scale": 20.0,
|
576 |
+
"similarity_fct": "cos_sim"
|
577 |
+
}
|
578 |
+
```
|
579 |
+
|
580 |
+
#### cl
|
581 |
+
|
582 |
+
* Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
583 |
+
* Size: 100,000 training samples
|
584 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
585 |
+
* Approximate statistics based on the first 1000 samples:
|
586 |
+
| | sentence1 | sentence2 | label |
|
587 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
588 |
+
| type | string | string | int |
|
589 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 15.3 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.66 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>0: ~62.00%</li><li>1: ~38.00%</li></ul> |
|
590 |
+
* Samples:
|
591 |
+
| sentence1 | sentence2 | label |
|
592 |
+
|:---------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:---------------|
|
593 |
+
| <code>What is the step by step guide to invest in share market in india?</code> | <code>What is the step by step guide to invest in share market?</code> | <code>0</code> |
|
594 |
+
| <code>What is the story of Kohinoor (Koh-i-Noor) Diamond?</code> | <code>What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?</code> | <code>0</code> |
|
595 |
+
| <code>How can I increase the speed of my internet connection while using a VPN?</code> | <code>How can Internet speed be increased by hacking through DNS?</code> | <code>0</code> |
|
596 |
+
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:
|
597 |
+
```json
|
598 |
+
{
|
599 |
+
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
600 |
+
"margin": 0.5,
|
601 |
+
"size_average": true
|
602 |
+
}
|
603 |
+
```
|
604 |
+
|
605 |
+
### Evaluation Datasets
|
606 |
+
|
607 |
+
#### mnrl
|
608 |
+
|
609 |
+
* Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
610 |
+
* Size: 1,000 evaluation samples
|
611 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
612 |
+
* Approximate statistics based on the first 1000 samples:
|
613 |
+
| | anchor | positive | negative |
|
614 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
615 |
+
| type | string | string | string |
|
616 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 13.84 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.8 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.71 tokens</li><li>max: 56 tokens</li></ul> |
|
617 |
+
* Samples:
|
618 |
+
| anchor | positive | negative |
|
619 |
+
|:---------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
620 |
+
| <code>Which programming language is best for developing low-end games?</code> | <code>What coding language should I learn first for making games?</code> | <code>I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?</code> |
|
621 |
+
| <code>Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump?</code> | <code>Should Meryl Streep be using her position to attack the president?</code> | <code>Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?</code> |
|
622 |
+
| <code>Where can I found excellent commercial fridges in Sydney?</code> | <code>Where can I found impressive range of commercial fridges in Sydney?</code> | <code>What is the best grocery delivery service in Sydney?</code> |
|
623 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
|
624 |
+
```json
|
625 |
+
{
|
626 |
+
"scale": 20.0,
|
627 |
+
"similarity_fct": "cos_sim"
|
628 |
+
}
|
629 |
+
```
|
630 |
+
|
631 |
+
#### cl
|
632 |
+
|
633 |
+
* Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
634 |
+
* Size: 1,000 evaluation samples
|
635 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
636 |
+
* Approximate statistics based on the first 1000 samples:
|
637 |
+
| | sentence1 | sentence2 | label |
|
638 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
639 |
+
| type | string | string | int |
|
640 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 15.59 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.65 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>0: ~63.40%</li><li>1: ~36.60%</li></ul> |
|
641 |
+
* Samples:
|
642 |
+
| sentence1 | sentence2 | label |
|
643 |
+
|:--------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|:---------------|
|
644 |
+
| <code>What should I ask my friend to get from UK to India?</code> | <code>What is the process of getting a surgical residency in UK after completing MBBS from India?</code> | <code>0</code> |
|
645 |
+
| <code>How can I learn hacking for free?</code> | <code>How can I learn to hack seriously?</code> | <code>1</code> |
|
646 |
+
| <code>Which is the best website to learn programming language C++?</code> | <code>Which is the best website to learn C++ Programming language for free?</code> | <code>0</code> |
|
647 |
+
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:
|
648 |
+
```json
|
649 |
+
{
|
650 |
+
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
651 |
+
"margin": 0.5,
|
652 |
+
"size_average": true
|
653 |
+
}
|
654 |
+
```
|
655 |
+
|
656 |
+
### Training Hyperparameters
|
657 |
+
#### Non-Default Hyperparameters
|
658 |
+
|
659 |
+
- `eval_strategy`: steps
|
660 |
+
- `per_device_train_batch_size`: 64
|
661 |
+
- `per_device_eval_batch_size`: 64
|
662 |
+
- `num_train_epochs`: 1
|
663 |
+
- `warmup_ratio`: 0.1
|
664 |
+
- `fp16`: True
|
665 |
+
- `batch_sampler`: no_duplicates
|
666 |
+
|
667 |
+
#### All Hyperparameters
|
668 |
+
<details><summary>Click to expand</summary>
|
669 |
+
|
670 |
+
- `overwrite_output_dir`: False
|
671 |
+
- `do_predict`: False
|
672 |
+
- `eval_strategy`: steps
|
673 |
+
- `prediction_loss_only`: False
|
674 |
+
- `per_device_train_batch_size`: 64
|
675 |
+
- `per_device_eval_batch_size`: 64
|
676 |
+
- `per_gpu_train_batch_size`: None
|
677 |
+
- `per_gpu_eval_batch_size`: None
|
678 |
+
- `gradient_accumulation_steps`: 1
|
679 |
+
- `eval_accumulation_steps`: None
|
680 |
+
- `learning_rate`: 5e-05
|
681 |
+
- `weight_decay`: 0.0
|
682 |
+
- `adam_beta1`: 0.9
|
683 |
+
- `adam_beta2`: 0.999
|
684 |
+
- `adam_epsilon`: 1e-08
|
685 |
+
- `max_grad_norm`: 1.0
|
686 |
+
- `num_train_epochs`: 1
|
687 |
+
- `max_steps`: -1
|
688 |
+
- `lr_scheduler_type`: linear
|
689 |
+
- `lr_scheduler_kwargs`: {}
|
690 |
+
- `warmup_ratio`: 0.1
|
691 |
+
- `warmup_steps`: 0
|
692 |
+
- `log_level`: passive
|
693 |
+
- `log_level_replica`: warning
|
694 |
+
- `log_on_each_node`: True
|
695 |
+
- `logging_nan_inf_filter`: True
|
696 |
+
- `save_safetensors`: True
|
697 |
+
- `save_on_each_node`: False
|
698 |
+
- `save_only_model`: False
|
699 |
+
- `no_cuda`: False
|
700 |
+
- `use_cpu`: False
|
701 |
+
- `use_mps_device`: False
|
702 |
+
- `seed`: 42
|
703 |
+
- `data_seed`: None
|
704 |
+
- `jit_mode_eval`: False
|
705 |
+
- `use_ipex`: False
|
706 |
+
- `bf16`: False
|
707 |
+
- `fp16`: True
|
708 |
+
- `fp16_opt_level`: O1
|
709 |
+
- `half_precision_backend`: auto
|
710 |
+
- `bf16_full_eval`: False
|
711 |
+
- `fp16_full_eval`: False
|
712 |
+
- `tf32`: None
|
713 |
+
- `local_rank`: 0
|
714 |
+
- `ddp_backend`: None
|
715 |
+
- `tpu_num_cores`: None
|
716 |
+
- `tpu_metrics_debug`: False
|
717 |
+
- `debug`: []
|
718 |
+
- `dataloader_drop_last`: False
|
719 |
+
- `dataloader_num_workers`: 0
|
720 |
+
- `dataloader_prefetch_factor`: None
|
721 |
+
- `past_index`: -1
|
722 |
+
- `disable_tqdm`: False
|
723 |
+
- `remove_unused_columns`: True
|
724 |
+
- `label_names`: None
|
725 |
+
- `load_best_model_at_end`: False
|
726 |
+
- `ignore_data_skip`: False
|
727 |
+
- `fsdp`: []
|
728 |
+
- `fsdp_min_num_params`: 0
|
729 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
730 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
731 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
732 |
+
- `deepspeed`: None
|
733 |
+
- `label_smoothing_factor`: 0.0
|
734 |
+
- `optim`: adamw_torch
|
735 |
+
- `optim_args`: None
|
736 |
+
- `adafactor`: False
|
737 |
+
- `group_by_length`: False
|
738 |
+
- `length_column_name`: length
|
739 |
+
- `ddp_find_unused_parameters`: None
|
740 |
+
- `ddp_bucket_cap_mb`: None
|
741 |
+
- `ddp_broadcast_buffers`: None
|
742 |
+
- `dataloader_pin_memory`: True
|
743 |
+
- `dataloader_persistent_workers`: False
|
744 |
+
- `skip_memory_metrics`: True
|
745 |
+
- `use_legacy_prediction_loop`: False
|
746 |
+
- `push_to_hub`: False
|
747 |
+
- `resume_from_checkpoint`: None
|
748 |
+
- `hub_model_id`: None
|
749 |
+
- `hub_strategy`: every_save
|
750 |
+
- `hub_private_repo`: False
|
751 |
+
- `hub_always_push`: False
|
752 |
+
- `gradient_checkpointing`: False
|
753 |
+
- `gradient_checkpointing_kwargs`: None
|
754 |
+
- `include_inputs_for_metrics`: False
|
755 |
+
- `eval_do_concat_batches`: True
|
756 |
+
- `fp16_backend`: auto
|
757 |
+
- `push_to_hub_model_id`: None
|
758 |
+
- `push_to_hub_organization`: None
|
759 |
+
- `mp_parameters`:
|
760 |
+
- `auto_find_batch_size`: False
|
761 |
+
- `full_determinism`: False
|
762 |
+
- `torchdynamo`: None
|
763 |
+
- `ray_scope`: last
|
764 |
+
- `ddp_timeout`: 1800
|
765 |
+
- `torch_compile`: False
|
766 |
+
- `torch_compile_backend`: None
|
767 |
+
- `torch_compile_mode`: None
|
768 |
+
- `dispatch_batches`: None
|
769 |
+
- `split_batches`: None
|
770 |
+
- `include_tokens_per_second`: False
|
771 |
+
- `include_num_input_tokens_seen`: False
|
772 |
+
- `neftune_noise_alpha`: None
|
773 |
+
- `optim_target_modules`: None
|
774 |
+
- `batch_sampler`: no_duplicates
|
775 |
+
- `multi_dataset_batch_sampler`: proportional
|
776 |
+
|
777 |
+
</details>
|
778 |
+
|
779 |
+
### Training Logs
|
780 |
+
| Epoch | Step | Training Loss | cl loss | mnrl loss | cosine_map@100 | quora-duplicates-dev_average_precision | quora-duplicates_max_ap |
|
781 |
+
|:------:|:----:|:-------------:|:-------:|:---------:|:--------------:|:--------------------------------------:|:-----------------------:|
|
782 |
+
| 0 | 0 | - | - | - | 0.9245 | 0.4200 | 0.6890 |
|
783 |
+
| 0.0320 | 100 | 0.1634 | - | - | - | - | - |
|
784 |
+
| 0.0640 | 200 | 0.1206 | - | - | - | - | - |
|
785 |
+
| 0.0800 | 250 | - | 0.0190 | 0.1469 | 0.9530 | 0.5068 | 0.7354 |
|
786 |
+
| 0.0960 | 300 | 0.1036 | - | - | - | - | - |
|
787 |
+
| 0.1280 | 400 | 0.0836 | - | - | - | - | - |
|
788 |
+
| 0.1599 | 500 | 0.0918 | 0.0180 | 0.1008 | 0.9553 | 0.5259 | 0.7643 |
|
789 |
+
| 0.1919 | 600 | 0.0784 | - | - | - | - | - |
|
790 |
+
| 0.2239 | 700 | 0.0656 | - | - | - | - | - |
|
791 |
+
| 0.2399 | 750 | - | 0.0177 | 0.0905 | 0.9593 | 0.5305 | 0.7686 |
|
792 |
+
| 0.2559 | 800 | 0.0593 | - | - | - | - | - |
|
793 |
+
| 0.2879 | 900 | 0.0534 | - | - | - | - | - |
|
794 |
+
| 0.3199 | 1000 | 0.0612 | 0.0161 | 0.0736 | 0.9642 | 0.5512 | 0.7881 |
|
795 |
+
| 0.3519 | 1100 | 0.0572 | - | - | - | - | - |
|
796 |
+
| 0.3839 | 1200 | 0.06 | - | - | - | - | - |
|
797 |
+
| 0.3999 | 1250 | - | 0.0158 | 0.0641 | 0.9649 | 0.5567 | 0.7983 |
|
798 |
+
| 0.4159 | 1300 | 0.0565 | - | - | - | - | - |
|
799 |
+
| 0.4479 | 1400 | 0.0565 | - | - | - | - | - |
|
800 |
+
| 0.4798 | 1500 | 0.0475 | 0.0154 | 0.0578 | 0.9645 | 0.5614 | 0.8062 |
|
801 |
+
| 0.5118 | 1600 | 0.0596 | - | - | - | - | - |
|
802 |
+
| 0.5438 | 1700 | 0.0509 | - | - | - | - | - |
|
803 |
+
| 0.5598 | 1750 | - | 0.0150 | 0.0525 | 0.9674 | 0.5762 | 0.8092 |
|
804 |
+
| 0.5758 | 1800 | 0.0403 | - | - | - | - | - |
|
805 |
+
| 0.6078 | 1900 | 0.0431 | - | - | - | - | - |
|
806 |
+
| 0.6398 | 2000 | 0.0481 | 0.0150 | 0.0531 | 0.9689 | 0.5824 | 0.8128 |
|
807 |
+
| 0.6718 | 2100 | 0.05 | - | - | - | - | - |
|
808 |
+
| 0.7038 | 2200 | 0.0468 | - | - | - | - | - |
|
809 |
+
| 0.7198 | 2250 | - | 0.0146 | 0.0486 | 0.9684 | 0.5756 | 0.8195 |
|
810 |
+
| 0.7358 | 2300 | 0.0436 | - | - | - | - | - |
|
811 |
+
| 0.7678 | 2400 | 0.0409 | - | - | - | - | - |
|
812 |
+
| 0.7997 | 2500 | 0.0391 | 0.0145 | 0.0454 | 0.9705 | 0.5822 | 0.8190 |
|
813 |
+
| 0.8317 | 2600 | 0.0412 | - | - | - | - | - |
|
814 |
+
| 0.8637 | 2700 | 0.0373 | - | - | - | - | - |
|
815 |
+
| 0.8797 | 2750 | - | 0.0143 | 0.0451 | 0.9705 | 0.5889 | 0.8229 |
|
816 |
+
| 0.8957 | 2800 | 0.0428 | - | - | - | - | - |
|
817 |
+
| 0.9277 | 2900 | 0.0419 | - | - | - | - | - |
|
818 |
+
| 0.9597 | 3000 | 0.0376 | 0.0143 | 0.0435 | 0.9709 | 0.5889 | 0.8230 |
|
819 |
+
| 0.9917 | 3100 | 0.0366 | - | - | - | - | - |
|
820 |
+
|
821 |
+
|
822 |
+
### Environmental Impact
|
823 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
824 |
+
- **Energy Consumed**: 0.084 kWh
|
825 |
+
- **Carbon Emitted**: 0.033 kg of CO2
|
826 |
+
- **Hours Used**: 0.399 hours
|
827 |
+
|
828 |
+
### Training Hardware
|
829 |
+
- **On Cloud**: No
|
830 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
831 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
832 |
+
- **RAM Size**: 31.78 GB
|
833 |
+
|
834 |
+
### Framework Versions
|
835 |
+
- Python: 3.11.6
|
836 |
+
- Sentence Transformers: 3.0.0.dev0
|
837 |
+
- Transformers: 4.41.0.dev0
|
838 |
+
- PyTorch: 2.3.0+cu121
|
839 |
+
- Accelerate: 0.26.1
|
840 |
+
- Datasets: 2.18.0
|
841 |
+
- Tokenizers: 0.19.1
|
842 |
+
|
843 |
+
## Citation
|
844 |
+
|
845 |
+
### BibTeX
|
846 |
+
|
847 |
+
#### Sentence Transformers
|
848 |
+
```bibtex
|
849 |
+
@inproceedings{reimers-2019-sentence-bert,
|
850 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
851 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
852 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
853 |
+
month = "11",
|
854 |
+
year = "2019",
|
855 |
+
publisher = "Association for Computational Linguistics",
|
856 |
+
url = "https://arxiv.org/abs/1908.10084",
|
857 |
+
}
|
858 |
+
```
|
859 |
+
|
860 |
+
#### MultipleNegativesRankingLoss
|
861 |
+
```bibtex
|
862 |
+
@misc{henderson2017efficient,
|
863 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
864 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
865 |
+
year={2017},
|
866 |
+
eprint={1705.00652},
|
867 |
+
archivePrefix={arXiv},
|
868 |
+
primaryClass={cs.CL}
|
869 |
+
}
|
870 |
+
```
|
871 |
+
|
872 |
+
#### ContrastiveLoss
|
873 |
+
```bibtex
|
874 |
+
@inproceedings{hadsell2006dimensionality,
|
875 |
+
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
|
876 |
+
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
877 |
+
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
878 |
+
year={2006},
|
879 |
+
volume={2},
|
880 |
+
number={},
|
881 |
+
pages={1735-1742},
|
882 |
+
doi={10.1109/CVPR.2006.100}
|
883 |
+
}
|
884 |
+
```
|
885 |
+
|
886 |
+
<!--
|
887 |
+
## Glossary
|
888 |
+
|
889 |
+
*Clearly define terms in order to be accessible across audiences.*
|
890 |
+
-->
|
891 |
+
|
892 |
+
<!--
|
893 |
+
## Model Card Authors
|
894 |
+
|
895 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
896 |
+
-->
|
897 |
+
|
898 |
+
<!--
|
899 |
+
## Model Card Contact
|
900 |
+
|
901 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
902 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/stsb-distilbert-base",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.0.dev0",
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e5fff731121df51b321267ac7bbc9c4add62099b0c93b84f7f14645c56fef5c
|
3 |
+
size 265462608
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"full_tokenizer_file": null,
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 128,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "DistilBertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|