tomaarsen HF staff commited on
Commit
ed25478
1 Parent(s): b2948d9

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,902 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:MultipleNegativesRankingLoss
10
+ - loss:ContrastiveLoss
11
+ base_model: sentence-transformers/stsb-distilbert-base
12
+ metrics:
13
+ - cosine_accuracy
14
+ - cosine_accuracy_threshold
15
+ - cosine_f1
16
+ - cosine_f1_threshold
17
+ - cosine_precision
18
+ - cosine_recall
19
+ - cosine_ap
20
+ - dot_accuracy
21
+ - dot_accuracy_threshold
22
+ - dot_f1
23
+ - dot_f1_threshold
24
+ - dot_precision
25
+ - dot_recall
26
+ - dot_ap
27
+ - manhattan_accuracy
28
+ - manhattan_accuracy_threshold
29
+ - manhattan_f1
30
+ - manhattan_f1_threshold
31
+ - manhattan_precision
32
+ - manhattan_recall
33
+ - manhattan_ap
34
+ - euclidean_accuracy
35
+ - euclidean_accuracy_threshold
36
+ - euclidean_f1
37
+ - euclidean_f1_threshold
38
+ - euclidean_precision
39
+ - euclidean_recall
40
+ - euclidean_ap
41
+ - max_accuracy
42
+ - max_accuracy_threshold
43
+ - max_f1
44
+ - max_f1_threshold
45
+ - max_precision
46
+ - max_recall
47
+ - max_ap
48
+ - average_precision
49
+ - f1
50
+ - precision
51
+ - recall
52
+ - threshold
53
+ - cosine_accuracy@1
54
+ - cosine_accuracy@3
55
+ - cosine_accuracy@5
56
+ - cosine_accuracy@10
57
+ - cosine_precision@1
58
+ - cosine_precision@3
59
+ - cosine_precision@5
60
+ - cosine_precision@10
61
+ - cosine_recall@1
62
+ - cosine_recall@3
63
+ - cosine_recall@5
64
+ - cosine_recall@10
65
+ - cosine_ndcg@10
66
+ - cosine_mrr@10
67
+ - cosine_map@100
68
+ - dot_accuracy@1
69
+ - dot_accuracy@3
70
+ - dot_accuracy@5
71
+ - dot_accuracy@10
72
+ - dot_precision@1
73
+ - dot_precision@3
74
+ - dot_precision@5
75
+ - dot_precision@10
76
+ - dot_recall@1
77
+ - dot_recall@3
78
+ - dot_recall@5
79
+ - dot_recall@10
80
+ - dot_ndcg@10
81
+ - dot_mrr@10
82
+ - dot_map@100
83
+ widget:
84
+ - source_sentence: What is Mindset?
85
+ sentences:
86
+ - What is a mindset?
87
+ - Can you eat only once a day?
88
+ - Is law a good career choice?
89
+ - source_sentence: Is a queef real?
90
+ sentences:
91
+ - Is "G" based on real events?
92
+ - What is the entire court process?
93
+ - How do I reduce my weight?
94
+ - source_sentence: Is Cicret a scam?
95
+ sentences:
96
+ - Is the Cicret Bracelet a scam?
97
+ - Was World War II Inevitable?
98
+ - What are some of the best photos?
99
+ - source_sentence: What is Planet X?
100
+ sentences:
101
+ - Do planet X exist?
102
+ - What are the best C++ books?
103
+ - How can I lose my weight fast?
104
+ - source_sentence: How fast is fast?
105
+ sentences:
106
+ - How does light travel so fast?
107
+ - How do I copyright my books?
108
+ - What is a black hole made of?
109
+ pipeline_tag: sentence-similarity
110
+ co2_eq_emissions:
111
+ emissions: 32.724475965905576
112
+ energy_consumed: 0.08418911136527617
113
+ source: codecarbon
114
+ training_type: fine-tuning
115
+ on_cloud: false
116
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
117
+ ram_total_size: 31.777088165283203
118
+ hours_used: 0.399
119
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
120
+ model-index:
121
+ - name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
122
+ results:
123
+ - task:
124
+ type: binary-classification
125
+ name: Binary Classification
126
+ dataset:
127
+ name: quora duplicates
128
+ type: quora-duplicates
129
+ metrics:
130
+ - type: cosine_accuracy
131
+ value: 0.846
132
+ name: Cosine Accuracy
133
+ - type: cosine_accuracy_threshold
134
+ value: 0.7969297170639038
135
+ name: Cosine Accuracy Threshold
136
+ - type: cosine_f1
137
+ value: 0.7791495198902607
138
+ name: Cosine F1
139
+ - type: cosine_f1_threshold
140
+ value: 0.7139598727226257
141
+ name: Cosine F1 Threshold
142
+ - type: cosine_precision
143
+ value: 0.6977886977886978
144
+ name: Cosine Precision
145
+ - type: cosine_recall
146
+ value: 0.8819875776397516
147
+ name: Cosine Recall
148
+ - type: cosine_ap
149
+ value: 0.8230449963294564
150
+ name: Cosine Ap
151
+ - type: dot_accuracy
152
+ value: 0.843
153
+ name: Dot Accuracy
154
+ - type: dot_accuracy_threshold
155
+ value: 151.2908477783203
156
+ name: Dot Accuracy Threshold
157
+ - type: dot_f1
158
+ value: 0.7660818713450294
159
+ name: Dot F1
160
+ - type: dot_f1_threshold
161
+ value: 143.77838134765625
162
+ name: Dot F1 Threshold
163
+ - type: dot_precision
164
+ value: 0.7237569060773481
165
+ name: Dot Precision
166
+ - type: dot_recall
167
+ value: 0.8136645962732919
168
+ name: Dot Recall
169
+ - type: dot_ap
170
+ value: 0.7946044629726107
171
+ name: Dot Ap
172
+ - type: manhattan_accuracy
173
+ value: 0.838
174
+ name: Manhattan Accuracy
175
+ - type: manhattan_accuracy_threshold
176
+ value: 194.99119567871094
177
+ name: Manhattan Accuracy Threshold
178
+ - type: manhattan_f1
179
+ value: 0.7704081632653061
180
+ name: Manhattan F1
181
+ - type: manhattan_f1_threshold
182
+ value: 247.49777221679688
183
+ name: Manhattan F1 Threshold
184
+ - type: manhattan_precision
185
+ value: 0.6536796536796536
186
+ name: Manhattan Precision
187
+ - type: manhattan_recall
188
+ value: 0.937888198757764
189
+ name: Manhattan Recall
190
+ - type: manhattan_ap
191
+ value: 0.8149715271935773
192
+ name: Manhattan Ap
193
+ - type: euclidean_accuracy
194
+ value: 0.841
195
+ name: Euclidean Accuracy
196
+ - type: euclidean_accuracy_threshold
197
+ value: 9.02225112915039
198
+ name: Euclidean Accuracy Threshold
199
+ - type: euclidean_f1
200
+ value: 0.7703889585947302
201
+ name: Euclidean F1
202
+ - type: euclidean_f1_threshold
203
+ value: 11.385245323181152
204
+ name: Euclidean F1 Threshold
205
+ - type: euclidean_precision
206
+ value: 0.6463157894736842
207
+ name: Euclidean Precision
208
+ - type: euclidean_recall
209
+ value: 0.953416149068323
210
+ name: Euclidean Recall
211
+ - type: euclidean_ap
212
+ value: 0.8152967320117391
213
+ name: Euclidean Ap
214
+ - type: max_accuracy
215
+ value: 0.846
216
+ name: Max Accuracy
217
+ - type: max_accuracy_threshold
218
+ value: 194.99119567871094
219
+ name: Max Accuracy Threshold
220
+ - type: max_f1
221
+ value: 0.7791495198902607
222
+ name: Max F1
223
+ - type: max_f1_threshold
224
+ value: 247.49777221679688
225
+ name: Max F1 Threshold
226
+ - type: max_precision
227
+ value: 0.7237569060773481
228
+ name: Max Precision
229
+ - type: max_recall
230
+ value: 0.953416149068323
231
+ name: Max Recall
232
+ - type: max_ap
233
+ value: 0.8230449963294564
234
+ name: Max Ap
235
+ - task:
236
+ type: paraphrase-mining
237
+ name: Paraphrase Mining
238
+ dataset:
239
+ name: quora duplicates dev
240
+ type: quora-duplicates-dev
241
+ metrics:
242
+ - type: average_precision
243
+ value: 0.5888649029434471
244
+ name: Average Precision
245
+ - type: f1
246
+ value: 0.5761652140962487
247
+ name: F1
248
+ - type: precision
249
+ value: 0.5477552123204396
250
+ name: Precision
251
+ - type: recall
252
+ value: 0.6076834690513064
253
+ name: Recall
254
+ - type: threshold
255
+ value: 0.7728720009326935
256
+ name: Threshold
257
+ - task:
258
+ type: information-retrieval
259
+ name: Information Retrieval
260
+ dataset:
261
+ name: Unknown
262
+ type: unknown
263
+ metrics:
264
+ - type: cosine_accuracy@1
265
+ value: 0.963
266
+ name: Cosine Accuracy@1
267
+ - type: cosine_accuracy@3
268
+ value: 0.9906
269
+ name: Cosine Accuracy@3
270
+ - type: cosine_accuracy@5
271
+ value: 0.9944
272
+ name: Cosine Accuracy@5
273
+ - type: cosine_accuracy@10
274
+ value: 0.9982
275
+ name: Cosine Accuracy@10
276
+ - type: cosine_precision@1
277
+ value: 0.963
278
+ name: Cosine Precision@1
279
+ - type: cosine_precision@3
280
+ value: 0.4285333333333333
281
+ name: Cosine Precision@3
282
+ - type: cosine_precision@5
283
+ value: 0.27568000000000004
284
+ name: Cosine Precision@5
285
+ - type: cosine_precision@10
286
+ value: 0.14494
287
+ name: Cosine Precision@10
288
+ - type: cosine_recall@1
289
+ value: 0.8299562338609103
290
+ name: Cosine Recall@1
291
+ - type: cosine_recall@3
292
+ value: 0.9590366552956846
293
+ name: Cosine Recall@3
294
+ - type: cosine_recall@5
295
+ value: 0.9806221849555673
296
+ name: Cosine Recall@5
297
+ - type: cosine_recall@10
298
+ value: 0.9925738410935468
299
+ name: Cosine Recall@10
300
+ - type: cosine_ndcg@10
301
+ value: 0.9784033087450696
302
+ name: Cosine Ndcg@10
303
+ - type: cosine_mrr@10
304
+ value: 0.9771579365079368
305
+ name: Cosine Mrr@10
306
+ - type: cosine_map@100
307
+ value: 0.9709189650394419
308
+ name: Cosine Map@100
309
+ - type: dot_accuracy@1
310
+ value: 0.9514
311
+ name: Dot Accuracy@1
312
+ - type: dot_accuracy@3
313
+ value: 0.9852
314
+ name: Dot Accuracy@3
315
+ - type: dot_accuracy@5
316
+ value: 0.991
317
+ name: Dot Accuracy@5
318
+ - type: dot_accuracy@10
319
+ value: 0.9968
320
+ name: Dot Accuracy@10
321
+ - type: dot_precision@1
322
+ value: 0.9514
323
+ name: Dot Precision@1
324
+ - type: dot_precision@3
325
+ value: 0.4247333333333334
326
+ name: Dot Precision@3
327
+ - type: dot_precision@5
328
+ value: 0.27364
329
+ name: Dot Precision@5
330
+ - type: dot_precision@10
331
+ value: 0.14458000000000001
332
+ name: Dot Precision@10
333
+ - type: dot_recall@1
334
+ value: 0.8194380520427287
335
+ name: Dot Recall@1
336
+ - type: dot_recall@3
337
+ value: 0.9520212390452685
338
+ name: Dot Recall@3
339
+ - type: dot_recall@5
340
+ value: 0.9755502441186265
341
+ name: Dot Recall@5
342
+ - type: dot_recall@10
343
+ value: 0.9910547306614953
344
+ name: Dot Recall@10
345
+ - type: dot_ndcg@10
346
+ value: 0.9715023430522326
347
+ name: Dot Ndcg@10
348
+ - type: dot_mrr@10
349
+ value: 0.9692583333333334
350
+ name: Dot Mrr@10
351
+ - type: dot_map@100
352
+ value: 0.961739772177385
353
+ name: Dot Map@100
354
+ ---
355
+
356
+ # SentenceTransformer based on sentence-transformers/stsb-distilbert-base
357
+
358
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
359
+
360
+ ## Model Details
361
+
362
+ ### Model Description
363
+ - **Model Type:** Sentence Transformer
364
+ - **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision 82ad392c08f81be9be9bf065339670b23f2e1493 -->
365
+ - **Maximum Sequence Length:** 128 tokens
366
+ - **Output Dimensionality:** 768 tokens
367
+ - **Similarity Function:** Cosine Similarity
368
+ - **Training Datasets:**
369
+ - [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
370
+ - [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
371
+ - **Language:** en
372
+ <!-- - **License:** Unknown -->
373
+
374
+ ### Model Sources
375
+
376
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
377
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
378
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
379
+
380
+ ### Full Model Architecture
381
+
382
+ ```
383
+ SentenceTransformer(
384
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
385
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
386
+ )
387
+ ```
388
+
389
+ ## Usage
390
+
391
+ ### Direct Usage (Sentence Transformers)
392
+
393
+ First install the Sentence Transformers library:
394
+
395
+ ```bash
396
+ pip install -U sentence-transformers
397
+ ```
398
+
399
+ Then you can load this model and run inference.
400
+ ```python
401
+ from sentence_transformers import SentenceTransformer
402
+
403
+ # Download from the 🤗 Hub
404
+ model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl-cl-multi")
405
+ # Run inference
406
+ sentences = [
407
+ 'How fast is fast?',
408
+ 'How does light travel so fast?',
409
+ 'How do I copyright my books?',
410
+ ]
411
+ embeddings = model.encode(sentences)
412
+ print(embeddings.shape)
413
+ # [3, 768]
414
+
415
+ # Get the similarity scores for the embeddings
416
+ similarities = model.similarity(embeddings)
417
+ print(similarities.shape)
418
+ # [3, 3]
419
+ ```
420
+
421
+ <!--
422
+ ### Direct Usage (Transformers)
423
+
424
+ <details><summary>Click to see the direct usage in Transformers</summary>
425
+
426
+ </details>
427
+ -->
428
+
429
+ <!--
430
+ ### Downstream Usage (Sentence Transformers)
431
+
432
+ You can finetune this model on your own dataset.
433
+
434
+ <details><summary>Click to expand</summary>
435
+
436
+ </details>
437
+ -->
438
+
439
+ <!--
440
+ ### Out-of-Scope Use
441
+
442
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
443
+ -->
444
+
445
+ ## Evaluation
446
+
447
+ ### Metrics
448
+
449
+ #### Binary Classification
450
+ * Dataset: `quora-duplicates`
451
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
452
+
453
+ | Metric | Value |
454
+ |:-----------------------------|:----------|
455
+ | cosine_accuracy | 0.846 |
456
+ | cosine_accuracy_threshold | 0.7969 |
457
+ | cosine_f1 | 0.7791 |
458
+ | cosine_f1_threshold | 0.714 |
459
+ | cosine_precision | 0.6978 |
460
+ | cosine_recall | 0.882 |
461
+ | cosine_ap | 0.823 |
462
+ | dot_accuracy | 0.843 |
463
+ | dot_accuracy_threshold | 151.2908 |
464
+ | dot_f1 | 0.7661 |
465
+ | dot_f1_threshold | 143.7784 |
466
+ | dot_precision | 0.7238 |
467
+ | dot_recall | 0.8137 |
468
+ | dot_ap | 0.7946 |
469
+ | manhattan_accuracy | 0.838 |
470
+ | manhattan_accuracy_threshold | 194.9912 |
471
+ | manhattan_f1 | 0.7704 |
472
+ | manhattan_f1_threshold | 247.4978 |
473
+ | manhattan_precision | 0.6537 |
474
+ | manhattan_recall | 0.9379 |
475
+ | manhattan_ap | 0.815 |
476
+ | euclidean_accuracy | 0.841 |
477
+ | euclidean_accuracy_threshold | 9.0223 |
478
+ | euclidean_f1 | 0.7704 |
479
+ | euclidean_f1_threshold | 11.3852 |
480
+ | euclidean_precision | 0.6463 |
481
+ | euclidean_recall | 0.9534 |
482
+ | euclidean_ap | 0.8153 |
483
+ | max_accuracy | 0.846 |
484
+ | max_accuracy_threshold | 194.9912 |
485
+ | max_f1 | 0.7791 |
486
+ | max_f1_threshold | 247.4978 |
487
+ | max_precision | 0.7238 |
488
+ | max_recall | 0.9534 |
489
+ | **max_ap** | **0.823** |
490
+
491
+ #### Paraphrase Mining
492
+ * Dataset: `quora-duplicates-dev`
493
+ * Evaluated with [<code>ParaphraseMiningEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator)
494
+
495
+ | Metric | Value |
496
+ |:----------------------|:-----------|
497
+ | **average_precision** | **0.5889** |
498
+ | f1 | 0.5762 |
499
+ | precision | 0.5478 |
500
+ | recall | 0.6077 |
501
+ | threshold | 0.7729 |
502
+
503
+ #### Information Retrieval
504
+
505
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
506
+
507
+ | Metric | Value |
508
+ |:--------------------|:-----------|
509
+ | cosine_accuracy@1 | 0.963 |
510
+ | cosine_accuracy@3 | 0.9906 |
511
+ | cosine_accuracy@5 | 0.9944 |
512
+ | cosine_accuracy@10 | 0.9982 |
513
+ | cosine_precision@1 | 0.963 |
514
+ | cosine_precision@3 | 0.4285 |
515
+ | cosine_precision@5 | 0.2757 |
516
+ | cosine_precision@10 | 0.1449 |
517
+ | cosine_recall@1 | 0.83 |
518
+ | cosine_recall@3 | 0.959 |
519
+ | cosine_recall@5 | 0.9806 |
520
+ | cosine_recall@10 | 0.9926 |
521
+ | cosine_ndcg@10 | 0.9784 |
522
+ | cosine_mrr@10 | 0.9772 |
523
+ | **cosine_map@100** | **0.9709** |
524
+ | dot_accuracy@1 | 0.9514 |
525
+ | dot_accuracy@3 | 0.9852 |
526
+ | dot_accuracy@5 | 0.991 |
527
+ | dot_accuracy@10 | 0.9968 |
528
+ | dot_precision@1 | 0.9514 |
529
+ | dot_precision@3 | 0.4247 |
530
+ | dot_precision@5 | 0.2736 |
531
+ | dot_precision@10 | 0.1446 |
532
+ | dot_recall@1 | 0.8194 |
533
+ | dot_recall@3 | 0.952 |
534
+ | dot_recall@5 | 0.9756 |
535
+ | dot_recall@10 | 0.9911 |
536
+ | dot_ndcg@10 | 0.9715 |
537
+ | dot_mrr@10 | 0.9693 |
538
+ | dot_map@100 | 0.9617 |
539
+
540
+ <!--
541
+ ## Bias, Risks and Limitations
542
+
543
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
544
+ -->
545
+
546
+ <!--
547
+ ### Recommendations
548
+
549
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
550
+ -->
551
+
552
+ ## Training Details
553
+
554
+ ### Training Datasets
555
+
556
+ #### mnrl
557
+
558
+ * Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
559
+ * Size: 100,000 training samples
560
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
561
+ * Approximate statistics based on the first 1000 samples:
562
+ | | anchor | positive | negative |
563
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
564
+ | type | string | string | string |
565
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.85 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.65 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.76 tokens</li><li>max: 64 tokens</li></ul> |
566
+ * Samples:
567
+ | anchor | positive | negative |
568
+ |:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|
569
+ | <code>Why in India do we not have one on one political debate as in USA?</code> | <code>Why cant we have a public debate between politicians in India like the one in US?</code> | <code>Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?</code> |
570
+ | <code>What is OnePlus One?</code> | <code>How is oneplus one?</code> | <code>Why is OnePlus One so good?</code> |
571
+ | <code>Does our mind control our emotions?</code> | <code>How do smart and successful people control their emotions?</code> | <code>How can I control my positive emotions for the people whom I love but they don't care about me?</code> |
572
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
573
+ ```json
574
+ {
575
+ "scale": 20.0,
576
+ "similarity_fct": "cos_sim"
577
+ }
578
+ ```
579
+
580
+ #### cl
581
+
582
+ * Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
583
+ * Size: 100,000 training samples
584
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
585
+ * Approximate statistics based on the first 1000 samples:
586
+ | | sentence1 | sentence2 | label |
587
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
588
+ | type | string | string | int |
589
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.3 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.66 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>0: ~62.00%</li><li>1: ~38.00%</li></ul> |
590
+ * Samples:
591
+ | sentence1 | sentence2 | label |
592
+ |:---------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:---------------|
593
+ | <code>What is the step by step guide to invest in share market in india?</code> | <code>What is the step by step guide to invest in share market?</code> | <code>0</code> |
594
+ | <code>What is the story of Kohinoor (Koh-i-Noor) Diamond?</code> | <code>What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?</code> | <code>0</code> |
595
+ | <code>How can I increase the speed of my internet connection while using a VPN?</code> | <code>How can Internet speed be increased by hacking through DNS?</code> | <code>0</code> |
596
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:
597
+ ```json
598
+ {
599
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
600
+ "margin": 0.5,
601
+ "size_average": true
602
+ }
603
+ ```
604
+
605
+ ### Evaluation Datasets
606
+
607
+ #### mnrl
608
+
609
+ * Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
610
+ * Size: 1,000 evaluation samples
611
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
612
+ * Approximate statistics based on the first 1000 samples:
613
+ | | anchor | positive | negative |
614
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
615
+ | type | string | string | string |
616
+ | details | <ul><li>min: 7 tokens</li><li>mean: 13.84 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.8 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.71 tokens</li><li>max: 56 tokens</li></ul> |
617
+ * Samples:
618
+ | anchor | positive | negative |
619
+ |:---------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
620
+ | <code>Which programming language is best for developing low-end games?</code> | <code>What coding language should I learn first for making games?</code> | <code>I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages ​​I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?</code> |
621
+ | <code>Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump?</code> | <code>Should Meryl Streep be using her position to attack the president?</code> | <code>Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?</code> |
622
+ | <code>Where can I found excellent commercial fridges in Sydney?</code> | <code>Where can I found impressive range of commercial fridges in Sydney?</code> | <code>What is the best grocery delivery service in Sydney?</code> |
623
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
624
+ ```json
625
+ {
626
+ "scale": 20.0,
627
+ "similarity_fct": "cos_sim"
628
+ }
629
+ ```
630
+
631
+ #### cl
632
+
633
+ * Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
634
+ * Size: 1,000 evaluation samples
635
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
636
+ * Approximate statistics based on the first 1000 samples:
637
+ | | sentence1 | sentence2 | label |
638
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
639
+ | type | string | string | int |
640
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.59 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.65 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>0: ~63.40%</li><li>1: ~36.60%</li></ul> |
641
+ * Samples:
642
+ | sentence1 | sentence2 | label |
643
+ |:--------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|:---------------|
644
+ | <code>What should I ask my friend to get from UK to India?</code> | <code>What is the process of getting a surgical residency in UK after completing MBBS from India?</code> | <code>0</code> |
645
+ | <code>How can I learn hacking for free?</code> | <code>How can I learn to hack seriously?</code> | <code>1</code> |
646
+ | <code>Which is the best website to learn programming language C++?</code> | <code>Which is the best website to learn C++ Programming language for free?</code> | <code>0</code> |
647
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:
648
+ ```json
649
+ {
650
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
651
+ "margin": 0.5,
652
+ "size_average": true
653
+ }
654
+ ```
655
+
656
+ ### Training Hyperparameters
657
+ #### Non-Default Hyperparameters
658
+
659
+ - `eval_strategy`: steps
660
+ - `per_device_train_batch_size`: 64
661
+ - `per_device_eval_batch_size`: 64
662
+ - `num_train_epochs`: 1
663
+ - `warmup_ratio`: 0.1
664
+ - `fp16`: True
665
+ - `batch_sampler`: no_duplicates
666
+
667
+ #### All Hyperparameters
668
+ <details><summary>Click to expand</summary>
669
+
670
+ - `overwrite_output_dir`: False
671
+ - `do_predict`: False
672
+ - `eval_strategy`: steps
673
+ - `prediction_loss_only`: False
674
+ - `per_device_train_batch_size`: 64
675
+ - `per_device_eval_batch_size`: 64
676
+ - `per_gpu_train_batch_size`: None
677
+ - `per_gpu_eval_batch_size`: None
678
+ - `gradient_accumulation_steps`: 1
679
+ - `eval_accumulation_steps`: None
680
+ - `learning_rate`: 5e-05
681
+ - `weight_decay`: 0.0
682
+ - `adam_beta1`: 0.9
683
+ - `adam_beta2`: 0.999
684
+ - `adam_epsilon`: 1e-08
685
+ - `max_grad_norm`: 1.0
686
+ - `num_train_epochs`: 1
687
+ - `max_steps`: -1
688
+ - `lr_scheduler_type`: linear
689
+ - `lr_scheduler_kwargs`: {}
690
+ - `warmup_ratio`: 0.1
691
+ - `warmup_steps`: 0
692
+ - `log_level`: passive
693
+ - `log_level_replica`: warning
694
+ - `log_on_each_node`: True
695
+ - `logging_nan_inf_filter`: True
696
+ - `save_safetensors`: True
697
+ - `save_on_each_node`: False
698
+ - `save_only_model`: False
699
+ - `no_cuda`: False
700
+ - `use_cpu`: False
701
+ - `use_mps_device`: False
702
+ - `seed`: 42
703
+ - `data_seed`: None
704
+ - `jit_mode_eval`: False
705
+ - `use_ipex`: False
706
+ - `bf16`: False
707
+ - `fp16`: True
708
+ - `fp16_opt_level`: O1
709
+ - `half_precision_backend`: auto
710
+ - `bf16_full_eval`: False
711
+ - `fp16_full_eval`: False
712
+ - `tf32`: None
713
+ - `local_rank`: 0
714
+ - `ddp_backend`: None
715
+ - `tpu_num_cores`: None
716
+ - `tpu_metrics_debug`: False
717
+ - `debug`: []
718
+ - `dataloader_drop_last`: False
719
+ - `dataloader_num_workers`: 0
720
+ - `dataloader_prefetch_factor`: None
721
+ - `past_index`: -1
722
+ - `disable_tqdm`: False
723
+ - `remove_unused_columns`: True
724
+ - `label_names`: None
725
+ - `load_best_model_at_end`: False
726
+ - `ignore_data_skip`: False
727
+ - `fsdp`: []
728
+ - `fsdp_min_num_params`: 0
729
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
730
+ - `fsdp_transformer_layer_cls_to_wrap`: None
731
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
732
+ - `deepspeed`: None
733
+ - `label_smoothing_factor`: 0.0
734
+ - `optim`: adamw_torch
735
+ - `optim_args`: None
736
+ - `adafactor`: False
737
+ - `group_by_length`: False
738
+ - `length_column_name`: length
739
+ - `ddp_find_unused_parameters`: None
740
+ - `ddp_bucket_cap_mb`: None
741
+ - `ddp_broadcast_buffers`: None
742
+ - `dataloader_pin_memory`: True
743
+ - `dataloader_persistent_workers`: False
744
+ - `skip_memory_metrics`: True
745
+ - `use_legacy_prediction_loop`: False
746
+ - `push_to_hub`: False
747
+ - `resume_from_checkpoint`: None
748
+ - `hub_model_id`: None
749
+ - `hub_strategy`: every_save
750
+ - `hub_private_repo`: False
751
+ - `hub_always_push`: False
752
+ - `gradient_checkpointing`: False
753
+ - `gradient_checkpointing_kwargs`: None
754
+ - `include_inputs_for_metrics`: False
755
+ - `eval_do_concat_batches`: True
756
+ - `fp16_backend`: auto
757
+ - `push_to_hub_model_id`: None
758
+ - `push_to_hub_organization`: None
759
+ - `mp_parameters`:
760
+ - `auto_find_batch_size`: False
761
+ - `full_determinism`: False
762
+ - `torchdynamo`: None
763
+ - `ray_scope`: last
764
+ - `ddp_timeout`: 1800
765
+ - `torch_compile`: False
766
+ - `torch_compile_backend`: None
767
+ - `torch_compile_mode`: None
768
+ - `dispatch_batches`: None
769
+ - `split_batches`: None
770
+ - `include_tokens_per_second`: False
771
+ - `include_num_input_tokens_seen`: False
772
+ - `neftune_noise_alpha`: None
773
+ - `optim_target_modules`: None
774
+ - `batch_sampler`: no_duplicates
775
+ - `multi_dataset_batch_sampler`: proportional
776
+
777
+ </details>
778
+
779
+ ### Training Logs
780
+ | Epoch | Step | Training Loss | cl loss | mnrl loss | cosine_map@100 | quora-duplicates-dev_average_precision | quora-duplicates_max_ap |
781
+ |:------:|:----:|:-------------:|:-------:|:---------:|:--------------:|:--------------------------------------:|:-----------------------:|
782
+ | 0 | 0 | - | - | - | 0.9245 | 0.4200 | 0.6890 |
783
+ | 0.0320 | 100 | 0.1634 | - | - | - | - | - |
784
+ | 0.0640 | 200 | 0.1206 | - | - | - | - | - |
785
+ | 0.0800 | 250 | - | 0.0190 | 0.1469 | 0.9530 | 0.5068 | 0.7354 |
786
+ | 0.0960 | 300 | 0.1036 | - | - | - | - | - |
787
+ | 0.1280 | 400 | 0.0836 | - | - | - | - | - |
788
+ | 0.1599 | 500 | 0.0918 | 0.0180 | 0.1008 | 0.9553 | 0.5259 | 0.7643 |
789
+ | 0.1919 | 600 | 0.0784 | - | - | - | - | - |
790
+ | 0.2239 | 700 | 0.0656 | - | - | - | - | - |
791
+ | 0.2399 | 750 | - | 0.0177 | 0.0905 | 0.9593 | 0.5305 | 0.7686 |
792
+ | 0.2559 | 800 | 0.0593 | - | - | - | - | - |
793
+ | 0.2879 | 900 | 0.0534 | - | - | - | - | - |
794
+ | 0.3199 | 1000 | 0.0612 | 0.0161 | 0.0736 | 0.9642 | 0.5512 | 0.7881 |
795
+ | 0.3519 | 1100 | 0.0572 | - | - | - | - | - |
796
+ | 0.3839 | 1200 | 0.06 | - | - | - | - | - |
797
+ | 0.3999 | 1250 | - | 0.0158 | 0.0641 | 0.9649 | 0.5567 | 0.7983 |
798
+ | 0.4159 | 1300 | 0.0565 | - | - | - | - | - |
799
+ | 0.4479 | 1400 | 0.0565 | - | - | - | - | - |
800
+ | 0.4798 | 1500 | 0.0475 | 0.0154 | 0.0578 | 0.9645 | 0.5614 | 0.8062 |
801
+ | 0.5118 | 1600 | 0.0596 | - | - | - | - | - |
802
+ | 0.5438 | 1700 | 0.0509 | - | - | - | - | - |
803
+ | 0.5598 | 1750 | - | 0.0150 | 0.0525 | 0.9674 | 0.5762 | 0.8092 |
804
+ | 0.5758 | 1800 | 0.0403 | - | - | - | - | - |
805
+ | 0.6078 | 1900 | 0.0431 | - | - | - | - | - |
806
+ | 0.6398 | 2000 | 0.0481 | 0.0150 | 0.0531 | 0.9689 | 0.5824 | 0.8128 |
807
+ | 0.6718 | 2100 | 0.05 | - | - | - | - | - |
808
+ | 0.7038 | 2200 | 0.0468 | - | - | - | - | - |
809
+ | 0.7198 | 2250 | - | 0.0146 | 0.0486 | 0.9684 | 0.5756 | 0.8195 |
810
+ | 0.7358 | 2300 | 0.0436 | - | - | - | - | - |
811
+ | 0.7678 | 2400 | 0.0409 | - | - | - | - | - |
812
+ | 0.7997 | 2500 | 0.0391 | 0.0145 | 0.0454 | 0.9705 | 0.5822 | 0.8190 |
813
+ | 0.8317 | 2600 | 0.0412 | - | - | - | - | - |
814
+ | 0.8637 | 2700 | 0.0373 | - | - | - | - | - |
815
+ | 0.8797 | 2750 | - | 0.0143 | 0.0451 | 0.9705 | 0.5889 | 0.8229 |
816
+ | 0.8957 | 2800 | 0.0428 | - | - | - | - | - |
817
+ | 0.9277 | 2900 | 0.0419 | - | - | - | - | - |
818
+ | 0.9597 | 3000 | 0.0376 | 0.0143 | 0.0435 | 0.9709 | 0.5889 | 0.8230 |
819
+ | 0.9917 | 3100 | 0.0366 | - | - | - | - | - |
820
+
821
+
822
+ ### Environmental Impact
823
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
824
+ - **Energy Consumed**: 0.084 kWh
825
+ - **Carbon Emitted**: 0.033 kg of CO2
826
+ - **Hours Used**: 0.399 hours
827
+
828
+ ### Training Hardware
829
+ - **On Cloud**: No
830
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
831
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
832
+ - **RAM Size**: 31.78 GB
833
+
834
+ ### Framework Versions
835
+ - Python: 3.11.6
836
+ - Sentence Transformers: 3.0.0.dev0
837
+ - Transformers: 4.41.0.dev0
838
+ - PyTorch: 2.3.0+cu121
839
+ - Accelerate: 0.26.1
840
+ - Datasets: 2.18.0
841
+ - Tokenizers: 0.19.1
842
+
843
+ ## Citation
844
+
845
+ ### BibTeX
846
+
847
+ #### Sentence Transformers
848
+ ```bibtex
849
+ @inproceedings{reimers-2019-sentence-bert,
850
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
851
+ author = "Reimers, Nils and Gurevych, Iryna",
852
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
853
+ month = "11",
854
+ year = "2019",
855
+ publisher = "Association for Computational Linguistics",
856
+ url = "https://arxiv.org/abs/1908.10084",
857
+ }
858
+ ```
859
+
860
+ #### MultipleNegativesRankingLoss
861
+ ```bibtex
862
+ @misc{henderson2017efficient,
863
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
864
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
865
+ year={2017},
866
+ eprint={1705.00652},
867
+ archivePrefix={arXiv},
868
+ primaryClass={cs.CL}
869
+ }
870
+ ```
871
+
872
+ #### ContrastiveLoss
873
+ ```bibtex
874
+ @inproceedings{hadsell2006dimensionality,
875
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
876
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
877
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
878
+ year={2006},
879
+ volume={2},
880
+ number={},
881
+ pages={1735-1742},
882
+ doi={10.1109/CVPR.2006.100}
883
+ }
884
+ ```
885
+
886
+ <!--
887
+ ## Glossary
888
+
889
+ *Clearly define terms in order to be accessible across audiences.*
890
+ -->
891
+
892
+ <!--
893
+ ## Model Card Authors
894
+
895
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
896
+ -->
897
+
898
+ <!--
899
+ ## Model Card Contact
900
+
901
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
902
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/stsb-distilbert-base",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.0.dev0",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e5fff731121df51b321267ac7bbc9c4add62099b0c93b84f7f14645c56fef5c
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "DistilBertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff