File size: 22,420 Bytes
91ef220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments. Use only for inference."""
import torch
import math
from torch import Tensor
from dataclasses import dataclass
from typing import Optional, Union
from .raven_config_minimal import RavenConfig
from transformers.cache_utils import Cache, DynamicCache
###################### Huggingface Glue code I ##################################################################
from transformers import PreTrainedModel
from transformers.utils import ModelOutput
class RavenPreTrainedModel(PreTrainedModel):
config_class = RavenConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["SandwichBlock"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = False
_supports_static_cache = False
def _init_weights(self, module):
print("Random Initialization not implemented.")
@dataclass
class CausalLMOutputRecurrentLatents(ModelOutput):
loss: Optional[torch.Tensor] = None
log_ppl: Optional[torch.Tensor] = None
logits: Optional[torch.Tensor] = None
past_key_values: Optional[Cache] = None
latent_states: Optional[torch.Tensor] = None
hidden_states: Optional[torch.Tensor] = None
attention_maps: Optional[tuple[torch.Tensor, ...]] = None
stats: Optional[dict] = None
###################### Minimal implementation from here ############################################################
class RMSNorm(torch.nn.Module):
"""Saner dtype handling and slightly better for fusion"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
with torch.autocast(enabled=False, device_type=x.device.type):
return self._norm(x.float()).type_as(x) * self.weight
def reset_parameters(self) -> None:
torch.nn.init.ones_(self.weight)
class HuginnDynamicCache(DynamicCache):
def __init__(self) -> None:
super().__init__()
self._seen_tokens = 0
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
# structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
step_idx: int,
lookup_strategy: str = "latest",
) -> tuple[torch.Tensor, torch.Tensor]:
# Init
if step_idx not in self.key_cache:
self.key_cache[step_idx] = {}
self.value_cache[step_idx] = {}
# Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
if step_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Add entries to cache
for idx, entry in enumerate(key_states.unbind(dim=-2)):
assert self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
for idx, entry in enumerate(value_states.unbind(dim=-2)):
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
# Materialize past state based on lookup strategy:
if len(self.key_cache[step_idx]) == self._seen_tokens:
# All entries are present, materialize cache as normal
return (
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
)
else: # some entries where not previously computed
if lookup_strategy == "latest":
latest_keys = []
latest_values = []
for token_pos in range(self._seen_tokens):
# Find the latest step that has this token position
max_step = max((s for s in range(step_idx + 1) if token_pos in self.key_cache[s]), default=None)
if max_step is None:
raise ValueError(f"No cache entry found for token position {token_pos}")
latest_keys.append(self.key_cache[max_step][token_pos])
latest_values.append(self.value_cache[max_step][token_pos])
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
elif lookup_strategy == "skip":
existing_keys = []
existing_values = []
for token_pos in range(self._seen_tokens):
if token_pos in self.key_cache[step_idx]:
existing_keys.append(self.key_cache[step_idx][token_pos])
existing_values.append(self.value_cache[step_idx][token_pos])
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
elif lookup_strategy == "randomized": # sanity check
rand_keys = []
rand_values = []
for token_pos in range(self._seen_tokens):
# Find steps that have this token position
steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
rand_step = steps[torch.randint(len(steps), (1,))]
rand_keys.append(self.key_cache[rand_step][token_pos])
rand_values.append(self.value_cache[rand_step][token_pos])
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
else:
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
def reset(self) -> None:
"""Reset the cache state."""
self._seen_tokens = 0
self.key_cache.clear()
self.value_cache.clear()
def get_seq_length(self, step_idx: int = 0) -> int:
return self._seen_tokens
class CausalSelfAttention(torch.nn.Module):
def __init__(self, config: RavenConfig) -> None:
super().__init__()
self.config = config
self.n_head = config.num_attention_heads
self.n_kv_heads = config.num_key_value_heads
self.head_dim = config.n_embd // self.n_head
shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
if config.qk_bias:
self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
step_idx: int,
mask: Optional[Tensor] = None,
past_key_values: Optional[Cache] = None,
) -> Tensor:
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
q = q.view(B, S, self.n_head, self.head_dim)
k = k.view(B, S, self.n_kv_heads, self.head_dim)
v = v.view(B, S, self.n_kv_heads, self.head_dim)
# bias?
if self.config.qk_bias:
q_bias, k_bias = self.qk_bias.split(1, dim=0)
q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
# apply rotary
q, k = apply_rotary_emb_complex_like(q, k, freqs_cis=freqs_cis)
q = q.transpose(1, 2) # (B, nh, S, hs)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if past_key_values is not None:
k, v = past_key_values.update(k, v, step_idx)
y = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=q.shape[2] > 1
)
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
return self.proj(y)
class GatedMLP(torch.nn.Module):
def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
super().__init__()
in_features = config.n_embd if in_features == 0 else in_features
self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)
self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
self.nonlin = torch.nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
# modified to single FC layer to improve parallelism
x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
x = self.nonlin(x_fc_1) * x_fc_2
return self.proj(x)
class SandwichBlock(torch.nn.Module):
expanded = False
def __init__(self, config: RavenConfig, layer_id: int) -> None:
super().__init__()
self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.attn = CausalSelfAttention(config)
self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.mlp = GatedMLP(config)
self.norm_3 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.norm_4 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.layer_id = layer_id
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
step_idx: int,
mask: Optional[Tensor] = None,
past_key_values: Optional[Cache] = None,
) -> Tensor:
x = self.norm_2(self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values) + x)
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
return x
class RavenForCausalLM(RavenPreTrainedModel):
def __init__(
self,
config: RavenConfig,
) -> None:
super().__init__(config)
self.config = config
# Transformer layers
prelude = torch.nn.ModuleList(SandwichBlock(config, layer_id=i) for i in range(config.n_layers_in_prelude))
adapter = torch.nn.Linear(config.n_embd * 2, config.n_embd, bias=config.bias)
core_block = torch.nn.ModuleList(
SandwichBlock(config, layer_id=i + config.n_layers_in_prelude)
for i in range(config.n_layers_in_recurrent_block)
)
o = config.n_layers_in_prelude + config.n_layers_in_recurrent_block * config.mean_recurrence
coda = torch.nn.ModuleList(SandwichBlock(config, layer_id=i + o) for i in range(config.n_layers_in_coda))
self.transformer = torch.nn.ModuleDict(
dict(
wte=torch.nn.Embedding(config.padded_vocab_size, config.n_embd),
prelude=prelude,
adapter=adapter,
core_block=core_block,
coda=coda,
ln_f=RMSNorm(config.n_embd, eps=config.norm_eps), # used twice :>
)
)
self.emb_scale = config.init_values["embed_scale"]
# Head
self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
if self.config.tie_embeddings:
self.lm_head.weight = self.transformer.wte.weight
# rope
self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
def _precompute_freqs_cis(self):
# can actually be a buffer now, and remains in fp32! (at least in the settings I tested)
freqs_cis = precompute_freqs_cis(
self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
)
return freqs_cis
def forward(
self,
input_ids: torch.Tensor,
input_embeds: Optional[torch.Tensor] = None,
input_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
num_steps_pair: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
output_details: dict = {
"return_logits": True,
"return_latents": True,
"return_attention": False,
"return_head": False,
"return_stats": True,
},
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
) -> dict[str, Optional[torch.Tensor]]:
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids)
elif cache_position is not None: # support HF format
freqs_cis = self.freqs_cis[:, cache_position : cache_position + 1]
if input_embeds is None:
input_embeds = self.transformer.wte(input_ids)
if self.emb_scale != 1:
input_embeds = input_embeds * self.emb_scale # type: ignore
if use_cache and past_key_values is None:
past_key_values = HuginnDynamicCache()
# Non-recurrent prelude
for block_idx, block in enumerate(self.transformer.prelude):
input_embeds = block(input_embeds, freqs_cis, block_idx, attention_mask, past_key_values)
# Main recurrence
x, num_steps_no_grad, num_steps_with_grad, xk = self.iterate_forward(
input_embeds, # type: ignore
input_states,
freqs_cis,
block_idx,
attention_mask,
past_key_values,
num_steps_pair,
)
latent_states = x.clone().detach()
# Coda layers
for block_idx, block in enumerate(self.transformer.coda, start=1):
x = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
x = self.transformer.ln_f(x)
# Prediction head, assuming labels really are labels and not equal to input_ids
if labels is not None:
logits = self.lm_head(x).float()
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
log_ppl = loss.clone().detach()
else:
logits = self.lm_head(x).float()
loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)
return CausalLMOutputRecurrentLatents(
loss=loss,
log_ppl=log_ppl,
logits=logits if output_details["return_logits"] else None,
past_key_values=past_key_values,
hidden_states=x if output_details["return_head"] else None,
latent_states=latent_states if output_details["return_latents"] else None,
attention_maps=ValueError() if output_details["return_attention"] else None, # type: ignore
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
if output_details["return_stats"]
else None,
)
@torch._dynamo.disable(recursive=False) # type: ignore
def iterate_forward(
self,
input_embeds,
input_states,
freqs_cis,
block_idx,
mask,
past_key_values: Optional[Cache] = None,
num_steps_pair: Optional[torch.Tensor] = None,
):
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
if num_steps_pair is None:
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
elif len(num_steps_pair) > 1:
num_steps_no_grad, num_steps_with_grad = num_steps_pair
else:
num_steps_no_grad, num_steps_with_grad = num_steps_pair, torch.tensor(0)
with torch.no_grad():
# ultra annoying in ddp due to
# https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
# for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
# and all parameters are always used
for step in range(num_steps_no_grad):
xk = x
x, block_idx = self.core_block_forward(xk, input_embeds, freqs_cis, mask, past_key_values, block_idx)
for step in range(num_steps_with_grad):
xk = x
x, block_idx = self.core_block_forward(xk, input_embeds, freqs_cis, mask, past_key_values, block_idx)
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach()
def core_block_forward(
self, x, input_embeds, freqs_cis, mask, past_key_values, block_idx: Union[torch.Tensor, int]
):
x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
for idx, block in enumerate(self.transformer.core_block, start=1):
x = block(x, freqs_cis, block_idx + idx, mask, past_key_values)
return x, block_idx + idx
@torch._dynamo.disable(recursive=False) # type: ignore
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Outputs are long tensors so that they can be passed through compiled functions"""
t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
s = self.config.mean_backprop_depth
if self.training:
sigma = 0.5
mu = math.log(t + s) - (sigma**2 / 2)
rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
n = torch.clamp(p - s, min=0)
k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
else:
n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)
return n.to(dtype=torch.long), k.to(dtype=torch.long)
def initialize_state(self, input_embeds):
x = torch.randn_like(input_embeds)
std = self.config.init_values["std"]
torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
if self.emb_scale != 1:
x = x * self.emb_scale
return x
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
):
model_inputs = {}
model_inputs["cache_position"] = cache_position
current_input_length = model_inputs["input_ids"].shape[1]
if past_key_values is not None:
model_inputs["past_key_values"] = past_key_values
input_ids = input_ids[:, cache_position] # type: ignore
model_inputs["input_ids"] = input_ids.clone(memory_format=torch.contiguous_format)
position_ids = torch.arange(current_input_length)[None, :]
model_inputs["positions_ids"] = position_ids[:, -current_input_length:].clone(
memory_format=torch.contiguous_format
) # positions_ids is a critical argument for the model to correctly apply rope!
# forward all other entries
for key, value in kwargs.items():
if key not in model_inputs:
model_inputs[key] = value
return model_inputs
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
probs = torch.softmax(logits.float(), dim=-1)
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
residual_diff = (x - latent_states).norm(dim=-1)
rel_residual = residual_diff / latent_states.norm(dim=-1)
stats = {
"entropy": prob_entropy,
"residual_diff": residual_diff,
"rel_residual": rel_residual,
"num_steps_no_grad": num_steps_no_grad,
"num_steps_with_grad": num_steps_with_grad,
}
return stats
#################################### Utils #######################################################################
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
with torch.autocast("cuda", enabled=False):
inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
t = torch.arange(end, dtype=torch.float32, device=inv_freqs.device) / condense_ratio
freqs = torch.outer(t, inv_freqs).float()
return torch.stack([torch.cos(freqs)[None, :, None, :], torch.sin(freqs)[None, :, None, :]], dim=4)
# equivalent to
# freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
# cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
def apply_rotary_emb_complex_like(q: Tensor, k: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
with torch.autocast("cuda", enabled=False):
qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float() # cast to float32 for smooth skin
rotated_qk_r2 = torch.stack(
[
qk_r2[..., 0] * freqs_cis[..., 0] - qk_r2[..., 1] * freqs_cis[..., 1],
qk_r2[..., 1] * freqs_cis[..., 0] + qk_r2[..., 0] * freqs_cis[..., 1],
],
-1,
).flatten(3)
rotated_qk = rotated_qk_r2
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2) # type: ignore
#################################### HF registration ############################################################
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
# New
RavenConfig.register_for_auto_class()
RavenForCausalLM.register_for_auto_class("AutoModel")
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")
# Old?
AutoConfig.register("huginn_raven", RavenConfig)
AutoModel.register(RavenConfig, RavenForCausalLM)
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)
|