File size: 22,420 Bytes
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments. Use only for inference."""

import torch
import math

from torch import Tensor
from dataclasses import dataclass
from typing import Optional, Union

from .raven_config_minimal import RavenConfig
from transformers.cache_utils import Cache, DynamicCache

###################### Huggingface Glue code I ##################################################################
from transformers import PreTrainedModel
from transformers.utils import ModelOutput


class RavenPreTrainedModel(PreTrainedModel):
    config_class = RavenConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["SandwichBlock"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_quantized_cache = False
    _supports_static_cache = False

    def _init_weights(self, module):
        print("Random Initialization not implemented.")


@dataclass
class CausalLMOutputRecurrentLatents(ModelOutput):
    loss: Optional[torch.Tensor] = None
    log_ppl: Optional[torch.Tensor] = None
    logits: Optional[torch.Tensor] = None
    past_key_values: Optional[Cache] = None
    latent_states: Optional[torch.Tensor] = None
    hidden_states: Optional[torch.Tensor] = None
    attention_maps: Optional[tuple[torch.Tensor, ...]] = None
    stats: Optional[dict] = None


###################### Minimal implementation from here ############################################################


class RMSNorm(torch.nn.Module):
    """Saner dtype handling and slightly better for fusion"""

    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        with torch.autocast(enabled=False, device_type=x.device.type):
            return self._norm(x.float()).type_as(x) * self.weight

    def reset_parameters(self) -> None:
        torch.nn.init.ones_(self.weight)


class HuginnDynamicCache(DynamicCache):
    def __init__(self) -> None:
        super().__init__()
        self._seen_tokens = 0
        self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
        self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
        # structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
        # the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
        # per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
        # Also, It is critical that the head indices do not overlap with the recurrent iteration indices

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        step_idx: int,
        lookup_strategy: str = "latest",
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Init
        if step_idx not in self.key_cache:
            self.key_cache[step_idx] = {}
            self.value_cache[step_idx] = {}
        # Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
        if step_idx == 0:
            self._seen_tokens += key_states.shape[-2]
        # Add entries to cache
        for idx, entry in enumerate(key_states.unbind(dim=-2)):
            assert self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
            self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
        for idx, entry in enumerate(value_states.unbind(dim=-2)):
            self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry

        # Materialize past state based on lookup strategy:
        if len(self.key_cache[step_idx]) == self._seen_tokens:
            # All entries are present, materialize cache as normal
            return (
                torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
                torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
            )
        else:  # some entries where not previously computed
            if lookup_strategy == "latest":
                latest_keys = []
                latest_values = []
                for token_pos in range(self._seen_tokens):
                    # Find the latest step that has this token position
                    max_step = max((s for s in range(step_idx + 1) if token_pos in self.key_cache[s]), default=None)
                    if max_step is None:
                        raise ValueError(f"No cache entry found for token position {token_pos}")
                    latest_keys.append(self.key_cache[max_step][token_pos])
                    latest_values.append(self.value_cache[max_step][token_pos])
                return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
            elif lookup_strategy == "skip":
                existing_keys = []
                existing_values = []
                for token_pos in range(self._seen_tokens):
                    if token_pos in self.key_cache[step_idx]:
                        existing_keys.append(self.key_cache[step_idx][token_pos])
                        existing_values.append(self.value_cache[step_idx][token_pos])
                return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
            elif lookup_strategy == "randomized":  # sanity check
                rand_keys = []
                rand_values = []
                for token_pos in range(self._seen_tokens):
                    # Find steps that have this token position
                    steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
                    rand_step = steps[torch.randint(len(steps), (1,))]
                    rand_keys.append(self.key_cache[rand_step][token_pos])
                    rand_values.append(self.value_cache[rand_step][token_pos])
                return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
            else:
                raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")

    def reset(self) -> None:
        """Reset the cache state."""
        self._seen_tokens = 0
        self.key_cache.clear()
        self.value_cache.clear()

    def get_seq_length(self, step_idx: int = 0) -> int:
        return self._seen_tokens


class CausalSelfAttention(torch.nn.Module):
    def __init__(self, config: RavenConfig) -> None:
        super().__init__()
        self.config = config
        self.n_head = config.num_attention_heads
        self.n_kv_heads = config.num_key_value_heads
        self.head_dim = config.n_embd // self.n_head

        shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
        self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
        self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
        if config.qk_bias:
            self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
        self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)

    def forward(
        self,
        x: Tensor,
        freqs_cis: Tensor,
        step_idx: int,
        mask: Optional[Tensor] = None,
        past_key_values: Optional[Cache] = None,
    ) -> Tensor:
        B, S, E = x.shape  # batch size, sequence length, embedding dimensionality (n_embd)
        q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
        q = q.view(B, S, self.n_head, self.head_dim)
        k = k.view(B, S, self.n_kv_heads, self.head_dim)
        v = v.view(B, S, self.n_kv_heads, self.head_dim)
        # bias?
        if self.config.qk_bias:
            q_bias, k_bias = self.qk_bias.split(1, dim=0)
            q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
        # apply rotary
        q, k = apply_rotary_emb_complex_like(q, k, freqs_cis=freqs_cis)

        q = q.transpose(1, 2)  # (B, nh, S, hs)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)

        if past_key_values is not None:
            k, v = past_key_values.update(k, v, step_idx)

        y = torch.nn.functional.scaled_dot_product_attention(
            q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=q.shape[2] > 1
        )
        y = y.transpose(1, 2).reshape(B, S, E).contiguous()  # reshape is a view if possible (it mostly is)
        return self.proj(y)


class GatedMLP(torch.nn.Module):
    def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
        super().__init__()
        in_features = config.n_embd if in_features == 0 else in_features
        self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)

        self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
        self.nonlin = torch.nn.SiLU()

    def forward(self, x: Tensor) -> Tensor:
        # modified to single FC layer to improve parallelism
        x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
        x = self.nonlin(x_fc_1) * x_fc_2
        return self.proj(x)


class SandwichBlock(torch.nn.Module):
    expanded = False

    def __init__(self, config: RavenConfig, layer_id: int) -> None:
        super().__init__()
        self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.attn = CausalSelfAttention(config)
        self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.mlp = GatedMLP(config)
        self.norm_3 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.norm_4 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.layer_id = layer_id

    def forward(
        self,
        x: Tensor,
        freqs_cis: Tensor,
        step_idx: int,
        mask: Optional[Tensor] = None,
        past_key_values: Optional[Cache] = None,
    ) -> Tensor:
        x = self.norm_2(self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values) + x)
        x = self.norm_4(self.mlp(self.norm_3(x)) + x)
        return x


class RavenForCausalLM(RavenPreTrainedModel):
    def __init__(
        self,
        config: RavenConfig,
    ) -> None:
        super().__init__(config)
        self.config = config

        # Transformer layers
        prelude = torch.nn.ModuleList(SandwichBlock(config, layer_id=i) for i in range(config.n_layers_in_prelude))
        adapter = torch.nn.Linear(config.n_embd * 2, config.n_embd, bias=config.bias)
        core_block = torch.nn.ModuleList(
            SandwichBlock(config, layer_id=i + config.n_layers_in_prelude)
            for i in range(config.n_layers_in_recurrent_block)
        )
        o = config.n_layers_in_prelude + config.n_layers_in_recurrent_block * config.mean_recurrence
        coda = torch.nn.ModuleList(SandwichBlock(config, layer_id=i + o) for i in range(config.n_layers_in_coda))

        self.transformer = torch.nn.ModuleDict(
            dict(
                wte=torch.nn.Embedding(config.padded_vocab_size, config.n_embd),
                prelude=prelude,
                adapter=adapter,
                core_block=core_block,
                coda=coda,
                ln_f=RMSNorm(config.n_embd, eps=config.norm_eps),  # used twice :>
            )
        )
        self.emb_scale = config.init_values["embed_scale"]
        # Head
        self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
        if self.config.tie_embeddings:
            self.lm_head.weight = self.transformer.wte.weight
        # rope
        self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)

    def _precompute_freqs_cis(self):
        # can actually be a buffer now, and remains in fp32! (at least in the settings I tested)
        freqs_cis = precompute_freqs_cis(
            self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
        )
        return freqs_cis

    def forward(
        self,
        input_ids: torch.Tensor,
        input_embeds: Optional[torch.Tensor] = None,
        input_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        num_steps_pair: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        output_details: dict = {
            "return_logits": True,
            "return_latents": True,
            "return_attention": False,
            "return_head": False,
            "return_stats": True,
        },
        use_cache: bool = False,
        cache_position: Optional[torch.Tensor] = None,
    ) -> dict[str, Optional[torch.Tensor]]:
        if position_ids is None and cache_position is None:
            freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
        elif position_ids is not None:
            freqs_cis = self.freqs_cis.index_select(1, position_ids)
        elif cache_position is not None:  # support HF format
            freqs_cis = self.freqs_cis[:, cache_position : cache_position + 1]

        if input_embeds is None:
            input_embeds = self.transformer.wte(input_ids)

        if self.emb_scale != 1:
            input_embeds = input_embeds * self.emb_scale  # type: ignore

        if use_cache and past_key_values is None:
            past_key_values = HuginnDynamicCache()

        # Non-recurrent prelude
        for block_idx, block in enumerate(self.transformer.prelude):
            input_embeds = block(input_embeds, freqs_cis, block_idx, attention_mask, past_key_values)

        # Main recurrence
        x, num_steps_no_grad, num_steps_with_grad, xk = self.iterate_forward(
            input_embeds,  # type: ignore
            input_states,
            freqs_cis,
            block_idx,
            attention_mask,
            past_key_values,
            num_steps_pair,
        )
        latent_states = x.clone().detach()

        # Coda layers
        for block_idx, block in enumerate(self.transformer.coda, start=1):
            x = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
        x = self.transformer.ln_f(x)

        # Prediction head, assuming labels really are labels and not equal to input_ids
        if labels is not None:
            logits = self.lm_head(x).float()
            loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
            log_ppl = loss.clone().detach()
        else:
            logits = self.lm_head(x).float()
            loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)

        return CausalLMOutputRecurrentLatents(
            loss=loss,
            log_ppl=log_ppl,
            logits=logits if output_details["return_logits"] else None,
            past_key_values=past_key_values,
            hidden_states=x if output_details["return_head"] else None,
            latent_states=latent_states if output_details["return_latents"] else None,
            attention_maps=ValueError() if output_details["return_attention"] else None,  # type: ignore
            stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
            if output_details["return_stats"]
            else None,
        )

    @torch._dynamo.disable(recursive=False)  # type: ignore
    def iterate_forward(
        self,
        input_embeds,
        input_states,
        freqs_cis,
        block_idx,
        mask,
        past_key_values: Optional[Cache] = None,
        num_steps_pair: Optional[torch.Tensor] = None,
    ):
        x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()

        if num_steps_pair is None:
            num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler()  # type: ignore
        elif len(num_steps_pair) > 1:
            num_steps_no_grad, num_steps_with_grad = num_steps_pair
        else:
            num_steps_no_grad, num_steps_with_grad = num_steps_pair, torch.tensor(0)

        with torch.no_grad():
            # ultra annoying in ddp due to
            # https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
            # for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
            # and all parameters are always used
            for step in range(num_steps_no_grad):
                xk = x
                x, block_idx = self.core_block_forward(xk, input_embeds, freqs_cis, mask, past_key_values, block_idx)

        for step in range(num_steps_with_grad):
            xk = x
            x, block_idx = self.core_block_forward(xk, input_embeds, freqs_cis, mask, past_key_values, block_idx)
        return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach()

    def core_block_forward(
        self, x, input_embeds, freqs_cis, mask, past_key_values, block_idx: Union[torch.Tensor, int]
    ):
        x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
        for idx, block in enumerate(self.transformer.core_block, start=1):
            x = block(x, freqs_cis, block_idx + idx, mask, past_key_values)
        return x, block_idx + idx

    @torch._dynamo.disable(recursive=False)  # type: ignore
    def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
        """Outputs are long tensors so that they can be passed through compiled functions"""
        t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
        s = self.config.mean_backprop_depth
        if self.training:
            sigma = 0.5
            mu = math.log(t + s) - (sigma**2 / 2)
            rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
            p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
            n = torch.clamp(p - s, min=0)
            k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
        else:
            n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)

        return n.to(dtype=torch.long), k.to(dtype=torch.long)

    def initialize_state(self, input_embeds):
        x = torch.randn_like(input_embeds)
        std = self.config.init_values["std"]
        torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
        if self.emb_scale != 1:
            x = x * self.emb_scale
        return x

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor,
        past_key_values: Optional[Cache] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ):
        model_inputs = {}
        model_inputs["cache_position"] = cache_position
        current_input_length = model_inputs["input_ids"].shape[1]
        if past_key_values is not None:
            model_inputs["past_key_values"] = past_key_values
            input_ids = input_ids[:, cache_position]  # type: ignore
        model_inputs["input_ids"] = input_ids.clone(memory_format=torch.contiguous_format)

        position_ids = torch.arange(current_input_length)[None, :]
        model_inputs["positions_ids"] = position_ids[:, -current_input_length:].clone(
            memory_format=torch.contiguous_format
        )  # positions_ids is a critical argument for the model to correctly apply rope!

        # forward all other entries
        for key, value in kwargs.items():
            if key not in model_inputs:
                model_inputs[key] = value
        return model_inputs

    def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
        probs = torch.softmax(logits.float(), dim=-1)
        prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
        residual_diff = (x - latent_states).norm(dim=-1)
        rel_residual = residual_diff / latent_states.norm(dim=-1)
        stats = {
            "entropy": prob_entropy,
            "residual_diff": residual_diff,
            "rel_residual": rel_residual,
            "num_steps_no_grad": num_steps_no_grad,
            "num_steps_with_grad": num_steps_with_grad,
        }
        return stats


#################################### Utils #######################################################################
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
    with torch.autocast("cuda", enabled=False):
        inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
        t = torch.arange(end, dtype=torch.float32, device=inv_freqs.device) / condense_ratio
        freqs = torch.outer(t, inv_freqs).float()
        return torch.stack([torch.cos(freqs)[None, :, None, :], torch.sin(freqs)[None, :, None, :]], dim=4)
        # equivalent to
        # freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
        # cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)


def apply_rotary_emb_complex_like(q: Tensor, k: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
    with torch.autocast("cuda", enabled=False):
        qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float()  # cast to float32 for smooth skin
        rotated_qk_r2 = torch.stack(
            [
                qk_r2[..., 0] * freqs_cis[..., 0] - qk_r2[..., 1] * freqs_cis[..., 1],
                qk_r2[..., 1] * freqs_cis[..., 0] + qk_r2[..., 0] * freqs_cis[..., 1],
            ],
            -1,
        ).flatten(3)
        rotated_qk = rotated_qk_r2
        return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2)  # type: ignore


#################################### HF registration ############################################################

from transformers import AutoConfig, AutoModel, AutoModelForCausalLM

# New
RavenConfig.register_for_auto_class()

RavenForCausalLM.register_for_auto_class("AutoModel")
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")

# Old?
AutoConfig.register("huginn_raven", RavenConfig)
AutoModel.register(RavenConfig, RavenForCausalLM)
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)