moooji's picture
Create handler.py
3cd62bd
from typing import Dict, List, Any
from PIL import Image
import torch
import base64
from io import BytesIO
from transformers import CLIPProcessor, CLIPModel
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class EndpointHandler():
def __init__(self, path=""):
self.model = CLIPModel.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K").to(device)
self.processor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K")
def __call__(self, data: Any) -> List[float]:
inputs = data.pop("inputs", data)
if "image" in inputs:
# decode base64 image to PIL
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
inputs = self.processor(images=image, text=None, return_tensors="pt", padding=True).to(device)
image_embeds = self.model.get_image_features(
pixel_values=inputs["pixel_values"]
)
return image_embeds[0].tolist()
if "text" in inputs:
text = inputs['text']
inputs = self.processor(images=None, text=text, return_tensors="pt", padding=True).to(device)
text_embeds = self.model.get_text_features(
input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]
)
return text_embeds[0].tolist()
raise Exception("No 'image' or 'text' provided")