from typing import Dict, List, Any from PIL import Image import torch import base64 from io import BytesIO from transformers import CLIPProcessor, CLIPModel device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class EndpointHandler(): def __init__(self, path=""): self.model = CLIPModel.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K").to(device) self.processor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K") def __call__(self, data: Any) -> List[float]: inputs = data.pop("inputs", data) if "image" in inputs: # decode base64 image to PIL image = Image.open(BytesIO(base64.b64decode(inputs['image']))) inputs = self.processor(images=image, text=None, return_tensors="pt", padding=True).to(device) image_embeds = self.model.get_image_features( pixel_values=inputs["pixel_values"] ) return image_embeds[0].tolist() if "text" in inputs: text = inputs['text'] inputs = self.processor(images=None, text=text, return_tensors="pt", padding=True).to(device) text_embeds = self.model.get_text_features( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"] ) return text_embeds[0].tolist() raise Exception("No 'image' or 'text' provided")