moooji commited on
Commit
1c31bd9
·
1 Parent(s): 830cf3e

End of training

Browse files
Files changed (5) hide show
  1. README.md +7 -5
  2. all_results.json +12 -0
  3. eval_results.json +8 -0
  4. train_results.json +7 -0
  5. trainer_state.json +217 -0
README.md CHANGED
@@ -2,6 +2,8 @@
2
  license: apache-2.0
3
  base_model: google/vit-large-patch16-224-in21k
4
  tags:
 
 
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
@@ -14,7 +16,7 @@ model-index:
14
  name: Image Classification
15
  type: image-classification
16
  dataset:
17
- name: imagefolder
18
  type: imagefolder
19
  config: default
20
  split: train
@@ -22,7 +24,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9942096120440069
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,10 +32,10 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  # fashion-images-gender-age-vit-large-patch16-224-in21k-v2
32
 
33
- This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.0259
36
- - Accuracy: 0.9942
37
 
38
  ## Model description
39
 
 
2
  license: apache-2.0
3
  base_model: google/vit-large-patch16-224-in21k
4
  tags:
5
+ - image-classification
6
+ - vision
7
  - generated_from_trainer
8
  datasets:
9
  - imagefolder
 
16
  name: Image Classification
17
  type: image-classification
18
  dataset:
19
+ name: touchtech/fashion-images-gender-age
20
  type: imagefolder
21
  config: default
22
  split: train
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.9939200926462073
28
  ---
29
 
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  # fashion-images-gender-age-vit-large-patch16-224-in21k-v2
34
 
35
+ This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the touchtech/fashion-images-gender-age dataset.
36
  It achieves the following results on the evaluation set:
37
+ - Loss: 0.0213
38
+ - Accuracy: 0.9939
39
 
40
  ## Model description
41
 
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.9939200926462073,
4
+ "eval_loss": 0.021338362246751785,
5
+ "eval_runtime": 239.8687,
6
+ "eval_samples_per_second": 14.4,
7
+ "eval_steps_per_second": 1.801,
8
+ "train_loss": 0.11058193139753197,
9
+ "train_runtime": 9068.2818,
10
+ "train_samples_per_second": 10.791,
11
+ "train_steps_per_second": 1.349
12
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.9939200926462073,
4
+ "eval_loss": 0.021338362246751785,
5
+ "eval_runtime": 239.8687,
6
+ "eval_samples_per_second": 14.4,
7
+ "eval_steps_per_second": 1.801
8
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "train_loss": 0.11058193139753197,
4
+ "train_runtime": 9068.2818,
5
+ "train_samples_per_second": 10.791,
6
+ "train_steps_per_second": 1.349
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.021338362246751785,
3
+ "best_model_checkpoint": "/workspace/training_output/age-gender-vit-large-patch16-224-in21k-v2/checkpoint-9788",
4
+ "epoch": 5.0,
5
+ "eval_steps": 500,
6
+ "global_step": 12235,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.2,
13
+ "learning_rate": 1.918267266040049e-05,
14
+ "loss": 0.3012,
15
+ "step": 500
16
+ },
17
+ {
18
+ "epoch": 0.41,
19
+ "learning_rate": 1.836534532080098e-05,
20
+ "loss": 0.2093,
21
+ "step": 1000
22
+ },
23
+ {
24
+ "epoch": 0.61,
25
+ "learning_rate": 1.7548017981201474e-05,
26
+ "loss": 0.1836,
27
+ "step": 1500
28
+ },
29
+ {
30
+ "epoch": 0.82,
31
+ "learning_rate": 1.6730690641601963e-05,
32
+ "loss": 0.1758,
33
+ "step": 2000
34
+ },
35
+ {
36
+ "epoch": 1.0,
37
+ "eval_accuracy": 0.9863925883034164,
38
+ "eval_loss": 0.04839900881052017,
39
+ "eval_runtime": 252.348,
40
+ "eval_samples_per_second": 13.687,
41
+ "eval_steps_per_second": 1.712,
42
+ "step": 2447
43
+ },
44
+ {
45
+ "epoch": 1.02,
46
+ "learning_rate": 1.5913363302002453e-05,
47
+ "loss": 0.157,
48
+ "step": 2500
49
+ },
50
+ {
51
+ "epoch": 1.23,
52
+ "learning_rate": 1.5096035962402944e-05,
53
+ "loss": 0.1331,
54
+ "step": 3000
55
+ },
56
+ {
57
+ "epoch": 1.43,
58
+ "learning_rate": 1.4278708622803434e-05,
59
+ "loss": 0.1351,
60
+ "step": 3500
61
+ },
62
+ {
63
+ "epoch": 1.63,
64
+ "learning_rate": 1.3461381283203925e-05,
65
+ "loss": 0.1333,
66
+ "step": 4000
67
+ },
68
+ {
69
+ "epoch": 1.84,
70
+ "learning_rate": 1.2644053943604415e-05,
71
+ "loss": 0.1123,
72
+ "step": 4500
73
+ },
74
+ {
75
+ "epoch": 2.0,
76
+ "eval_accuracy": 0.980023161551824,
77
+ "eval_loss": 0.0850570872426033,
78
+ "eval_runtime": 231.2388,
79
+ "eval_samples_per_second": 14.937,
80
+ "eval_steps_per_second": 1.868,
81
+ "step": 4894
82
+ },
83
+ {
84
+ "epoch": 2.04,
85
+ "learning_rate": 1.1826726604004906e-05,
86
+ "loss": 0.1151,
87
+ "step": 5000
88
+ },
89
+ {
90
+ "epoch": 2.25,
91
+ "learning_rate": 1.1009399264405396e-05,
92
+ "loss": 0.0985,
93
+ "step": 5500
94
+ },
95
+ {
96
+ "epoch": 2.45,
97
+ "learning_rate": 1.0192071924805887e-05,
98
+ "loss": 0.0941,
99
+ "step": 6000
100
+ },
101
+ {
102
+ "epoch": 2.66,
103
+ "learning_rate": 9.374744585206375e-06,
104
+ "loss": 0.1066,
105
+ "step": 6500
106
+ },
107
+ {
108
+ "epoch": 2.86,
109
+ "learning_rate": 8.557417245606866e-06,
110
+ "loss": 0.0922,
111
+ "step": 7000
112
+ },
113
+ {
114
+ "epoch": 3.0,
115
+ "eval_accuracy": 0.9910248986682108,
116
+ "eval_loss": 0.034099191427230835,
117
+ "eval_runtime": 239.3405,
118
+ "eval_samples_per_second": 14.431,
119
+ "eval_steps_per_second": 1.805,
120
+ "step": 7341
121
+ },
122
+ {
123
+ "epoch": 3.06,
124
+ "learning_rate": 7.740089906007356e-06,
125
+ "loss": 0.091,
126
+ "step": 7500
127
+ },
128
+ {
129
+ "epoch": 3.27,
130
+ "learning_rate": 6.922762566407847e-06,
131
+ "loss": 0.0666,
132
+ "step": 8000
133
+ },
134
+ {
135
+ "epoch": 3.47,
136
+ "learning_rate": 6.105435226808338e-06,
137
+ "loss": 0.0667,
138
+ "step": 8500
139
+ },
140
+ {
141
+ "epoch": 3.68,
142
+ "learning_rate": 5.288107887208827e-06,
143
+ "loss": 0.0727,
144
+ "step": 9000
145
+ },
146
+ {
147
+ "epoch": 3.88,
148
+ "learning_rate": 4.470780547609318e-06,
149
+ "loss": 0.0592,
150
+ "step": 9500
151
+ },
152
+ {
153
+ "epoch": 4.0,
154
+ "eval_accuracy": 0.9939200926462073,
155
+ "eval_loss": 0.021338362246751785,
156
+ "eval_runtime": 246.6506,
157
+ "eval_samples_per_second": 14.004,
158
+ "eval_steps_per_second": 1.751,
159
+ "step": 9788
160
+ },
161
+ {
162
+ "epoch": 4.09,
163
+ "learning_rate": 3.6534532080098086e-06,
164
+ "loss": 0.0646,
165
+ "step": 10000
166
+ },
167
+ {
168
+ "epoch": 4.29,
169
+ "learning_rate": 2.8361258684102986e-06,
170
+ "loss": 0.0601,
171
+ "step": 10500
172
+ },
173
+ {
174
+ "epoch": 4.5,
175
+ "learning_rate": 2.018798528810789e-06,
176
+ "loss": 0.0556,
177
+ "step": 11000
178
+ },
179
+ {
180
+ "epoch": 4.7,
181
+ "learning_rate": 1.201471189211279e-06,
182
+ "loss": 0.0506,
183
+ "step": 11500
184
+ },
185
+ {
186
+ "epoch": 4.9,
187
+ "learning_rate": 3.841438496117696e-07,
188
+ "loss": 0.053,
189
+ "step": 12000
190
+ },
191
+ {
192
+ "epoch": 5.0,
193
+ "eval_accuracy": 0.9942096120440069,
194
+ "eval_loss": 0.02587772160768509,
195
+ "eval_runtime": 241.5304,
196
+ "eval_samples_per_second": 14.3,
197
+ "eval_steps_per_second": 1.789,
198
+ "step": 12235
199
+ },
200
+ {
201
+ "epoch": 5.0,
202
+ "step": 12235,
203
+ "total_flos": 2.6807470622410383e+19,
204
+ "train_loss": 0.11058193139753197,
205
+ "train_runtime": 9068.2818,
206
+ "train_samples_per_second": 10.791,
207
+ "train_steps_per_second": 1.349
208
+ }
209
+ ],
210
+ "logging_steps": 500,
211
+ "max_steps": 12235,
212
+ "num_train_epochs": 5,
213
+ "save_steps": 500,
214
+ "total_flos": 2.6807470622410383e+19,
215
+ "trial_name": null,
216
+ "trial_params": null
217
+ }