moooji commited on
Commit
325c2bd
·
1 Parent(s): 3e19639

End of training

Browse files
Files changed (5) hide show
  1. README.md +7 -5
  2. all_results.json +12 -0
  3. eval_results.json +8 -0
  4. train_results.json +7 -0
  5. trainer_state.json +217 -0
README.md CHANGED
@@ -2,6 +2,8 @@
2
  license: apache-2.0
3
  base_model: google/vit-large-patch16-224-in21k
4
  tags:
 
 
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
@@ -14,7 +16,7 @@ model-index:
14
  name: Image Classification
15
  type: image-classification
16
  dataset:
17
- name: imagefolder
18
  type: imagefolder
19
  config: default
20
  split: train
@@ -22,7 +24,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9948096885813149
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,10 +32,10 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  # fashion-images-gender-age-vit-large-patch16-224-in21k-v3
32
 
33
- This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.0273
36
- - Accuracy: 0.9948
37
 
38
  ## Model description
39
 
 
2
  license: apache-2.0
3
  base_model: google/vit-large-patch16-224-in21k
4
  tags:
5
+ - image-classification
6
+ - vision
7
  - generated_from_trainer
8
  datasets:
9
  - imagefolder
 
16
  name: Image Classification
17
  type: image-classification
18
  dataset:
19
+ name: touchtech/fashion-images-gender-age
20
  type: imagefolder
21
  config: default
22
  split: train
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.9959630911188004
28
  ---
29
 
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  # fashion-images-gender-age-vit-large-patch16-224-in21k-v3
34
 
35
+ This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the touchtech/fashion-images-gender-age dataset.
36
  It achieves the following results on the evaluation set:
37
+ - Loss: 0.0223
38
+ - Accuracy: 0.9960
39
 
40
  ## Model description
41
 
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.9959630911188004,
4
+ "eval_loss": 0.0222712941467762,
5
+ "eval_runtime": 297.0035,
6
+ "eval_samples_per_second": 11.677,
7
+ "eval_steps_per_second": 1.461,
8
+ "train_loss": 0.11123836355865317,
9
+ "train_runtime": 12631.4535,
10
+ "train_samples_per_second": 7.779,
11
+ "train_steps_per_second": 0.973
12
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.9959630911188004,
4
+ "eval_loss": 0.0222712941467762,
5
+ "eval_runtime": 297.0035,
6
+ "eval_samples_per_second": 11.677,
7
+ "eval_steps_per_second": 1.461
8
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "train_loss": 0.11123836355865317,
4
+ "train_runtime": 12631.4535,
5
+ "train_samples_per_second": 7.779,
6
+ "train_steps_per_second": 0.973
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.0222712941467762,
3
+ "best_model_checkpoint": "/workspace/training_output/age-gender-vit-large-patch16-224-in21k-v3/checkpoint-9828",
4
+ "epoch": 5.0,
5
+ "eval_steps": 500,
6
+ "global_step": 12285,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.2,
13
+ "learning_rate": 1.9185999185999185e-05,
14
+ "loss": 0.3037,
15
+ "step": 500
16
+ },
17
+ {
18
+ "epoch": 0.41,
19
+ "learning_rate": 1.8371998371998375e-05,
20
+ "loss": 0.2165,
21
+ "step": 1000
22
+ },
23
+ {
24
+ "epoch": 0.61,
25
+ "learning_rate": 1.755799755799756e-05,
26
+ "loss": 0.1959,
27
+ "step": 1500
28
+ },
29
+ {
30
+ "epoch": 0.81,
31
+ "learning_rate": 1.6743996743996746e-05,
32
+ "loss": 0.1868,
33
+ "step": 2000
34
+ },
35
+ {
36
+ "epoch": 1.0,
37
+ "eval_accuracy": 0.9852941176470589,
38
+ "eval_loss": 0.05468880385160446,
39
+ "eval_runtime": 310.0142,
40
+ "eval_samples_per_second": 11.187,
41
+ "eval_steps_per_second": 1.4,
42
+ "step": 2457
43
+ },
44
+ {
45
+ "epoch": 1.02,
46
+ "learning_rate": 1.5929995929995933e-05,
47
+ "loss": 0.1677,
48
+ "step": 2500
49
+ },
50
+ {
51
+ "epoch": 1.22,
52
+ "learning_rate": 1.5115995115995116e-05,
53
+ "loss": 0.1256,
54
+ "step": 3000
55
+ },
56
+ {
57
+ "epoch": 1.42,
58
+ "learning_rate": 1.4301994301994305e-05,
59
+ "loss": 0.1379,
60
+ "step": 3500
61
+ },
62
+ {
63
+ "epoch": 1.63,
64
+ "learning_rate": 1.348799348799349e-05,
65
+ "loss": 0.1172,
66
+ "step": 4000
67
+ },
68
+ {
69
+ "epoch": 1.83,
70
+ "learning_rate": 1.2673992673992674e-05,
71
+ "loss": 0.1209,
72
+ "step": 4500
73
+ },
74
+ {
75
+ "epoch": 2.0,
76
+ "eval_accuracy": 0.9887543252595156,
77
+ "eval_loss": 0.040104664862155914,
78
+ "eval_runtime": 296.5781,
79
+ "eval_samples_per_second": 11.693,
80
+ "eval_steps_per_second": 1.463,
81
+ "step": 4914
82
+ },
83
+ {
84
+ "epoch": 2.04,
85
+ "learning_rate": 1.1859991859991862e-05,
86
+ "loss": 0.1226,
87
+ "step": 5000
88
+ },
89
+ {
90
+ "epoch": 2.24,
91
+ "learning_rate": 1.1045991045991047e-05,
92
+ "loss": 0.1012,
93
+ "step": 5500
94
+ },
95
+ {
96
+ "epoch": 2.44,
97
+ "learning_rate": 1.0231990231990233e-05,
98
+ "loss": 0.0843,
99
+ "step": 6000
100
+ },
101
+ {
102
+ "epoch": 2.65,
103
+ "learning_rate": 9.417989417989418e-06,
104
+ "loss": 0.0938,
105
+ "step": 6500
106
+ },
107
+ {
108
+ "epoch": 2.85,
109
+ "learning_rate": 8.603988603988605e-06,
110
+ "loss": 0.1027,
111
+ "step": 7000
112
+ },
113
+ {
114
+ "epoch": 3.0,
115
+ "eval_accuracy": 0.9936562860438293,
116
+ "eval_loss": 0.026174411177635193,
117
+ "eval_runtime": 332.8527,
118
+ "eval_samples_per_second": 10.419,
119
+ "eval_steps_per_second": 1.304,
120
+ "step": 7371
121
+ },
122
+ {
123
+ "epoch": 3.05,
124
+ "learning_rate": 7.78998778998779e-06,
125
+ "loss": 0.0851,
126
+ "step": 7500
127
+ },
128
+ {
129
+ "epoch": 3.26,
130
+ "learning_rate": 6.975986975986977e-06,
131
+ "loss": 0.0664,
132
+ "step": 8000
133
+ },
134
+ {
135
+ "epoch": 3.46,
136
+ "learning_rate": 6.161986161986162e-06,
137
+ "loss": 0.0826,
138
+ "step": 8500
139
+ },
140
+ {
141
+ "epoch": 3.66,
142
+ "learning_rate": 5.347985347985348e-06,
143
+ "loss": 0.0743,
144
+ "step": 9000
145
+ },
146
+ {
147
+ "epoch": 3.87,
148
+ "learning_rate": 4.533984533984534e-06,
149
+ "loss": 0.0654,
150
+ "step": 9500
151
+ },
152
+ {
153
+ "epoch": 4.0,
154
+ "eval_accuracy": 0.9959630911188004,
155
+ "eval_loss": 0.0222712941467762,
156
+ "eval_runtime": 299.4708,
157
+ "eval_samples_per_second": 11.58,
158
+ "eval_steps_per_second": 1.449,
159
+ "step": 9828
160
+ },
161
+ {
162
+ "epoch": 4.07,
163
+ "learning_rate": 3.7199837199837202e-06,
164
+ "loss": 0.0632,
165
+ "step": 10000
166
+ },
167
+ {
168
+ "epoch": 4.27,
169
+ "learning_rate": 2.9059829059829063e-06,
170
+ "loss": 0.0424,
171
+ "step": 10500
172
+ },
173
+ {
174
+ "epoch": 4.48,
175
+ "learning_rate": 2.091982091982092e-06,
176
+ "loss": 0.0618,
177
+ "step": 11000
178
+ },
179
+ {
180
+ "epoch": 4.68,
181
+ "learning_rate": 1.2779812779812782e-06,
182
+ "loss": 0.0461,
183
+ "step": 11500
184
+ },
185
+ {
186
+ "epoch": 4.88,
187
+ "learning_rate": 4.63980463980464e-07,
188
+ "loss": 0.0542,
189
+ "step": 12000
190
+ },
191
+ {
192
+ "epoch": 5.0,
193
+ "eval_accuracy": 0.9948096885813149,
194
+ "eval_loss": 0.027304569259285927,
195
+ "eval_runtime": 302.9795,
196
+ "eval_samples_per_second": 11.446,
197
+ "eval_steps_per_second": 1.432,
198
+ "step": 12285
199
+ },
200
+ {
201
+ "epoch": 5.0,
202
+ "step": 12285,
203
+ "total_flos": 2.6917045405252854e+19,
204
+ "train_loss": 0.11123836355865317,
205
+ "train_runtime": 12631.4535,
206
+ "train_samples_per_second": 7.779,
207
+ "train_steps_per_second": 0.973
208
+ }
209
+ ],
210
+ "logging_steps": 500,
211
+ "max_steps": 12285,
212
+ "num_train_epochs": 5,
213
+ "save_steps": 500,
214
+ "total_flos": 2.6917045405252854e+19,
215
+ "trial_name": null,
216
+ "trial_params": null
217
+ }