moooji commited on
Commit
02027de
·
1 Parent(s): eed8e2c

Model save

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-large-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: fashion-images-pack-types-vit-large-patch16-224-in21k-v3
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9908103592314118
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # fashion-images-pack-types-vit-large-patch16-224-in21k-v3
32
+
33
+ This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0485
36
+ - Accuracy: 0.9908
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 1337
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 5.0
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
66
+ |:-------------:|:-----:|:----:|:--------:|:---------------:|
67
+ | 0.1662 | 1.0 | 1696 | 0.9737 | 0.1074 |
68
+ | 0.116 | 2.0 | 3392 | 0.9816 | 0.0545 |
69
+ | 0.091 | 3.0 | 5088 | 0.9850 | 0.0647 |
70
+ | 0.0601 | 4.0 | 6784 | 0.0502 | 0.9887 |
71
+ | 0.0438 | 5.0 | 8480 | 0.0485 | 0.9908 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.33.0.dev0
77
+ - Pytorch 2.0.1+cu118
78
+ - Datasets 2.14.5
79
+ - Tokenizers 0.13.3