--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0025 - Precision: 0.6402 - Recall: 0.7307 - F1: 0.6824 - Accuracy: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 383 | 0.0032 | 0.6972 | 0.528 | 0.6009 | 0.9991 | | 0.0292 | 2.0 | 766 | 0.0023 | 0.7590 | 0.672 | 0.7129 | 0.9994 | | 0.0018 | 3.0 | 1149 | 0.0023 | 0.7660 | 0.7333 | 0.7493 | 0.9994 | | 0.0009 | 4.0 | 1532 | 0.0023 | 0.7520 | 0.736 | 0.7439 | 0.9994 | | 0.0009 | 5.0 | 1915 | 0.0025 | 0.6402 | 0.7307 | 0.6824 | 0.9992 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2