--- library_name: peft base_model: beomi/open-llama-2-ko-7b license: cc-by-sa-4.0 datasets: - traintogpb/aihub-flores-koen-integrated-sparta-30k language: - en - ko metrics: - sacrebleu - comet pipeline_tag: translation --- ### Pretrained LM - [beomi/open-llama-2-ko-7b](https://huggingface.co/beomi/open-llama-2-ko-7b) (MIT License) ### Training Dataset - [traintogpb/aihub-flores-koen-integrated-sparta-30k](https://huggingface.co/datasets/traintogpb/aihub-flores-koen-integrated-sparta-30k) - Can translate in Enlgish-Korean (bi-directional) ### Prompt - Template: ```python prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:" >>> # src_lang can be 'English', '한국어' >>> # tgt_lang can be '한국어', 'English' ``` - Issue: The tokenizer of the model tokenizes the prompt below in different way with the prompt above. Make sure to use the prompt proposed above. ```python prompt = f"""Translate this from {src_lang} to {tgt_lang} ### {src_lang}: {src_text} ### {tgt_lang}:""" >>> # DO NOT USE this prompt. ``` And mind that there is no "space (`_`)" at the end of the prompt. ### Training - Trained with QLoRA - PLM: NormalFloat 4-bit - Adapter: BrainFloat 16-bit - Adapted to all the linear layers (around 2.2%) ### Usage (IMPORTANT) - Should remove the EOS token (`<|endoftext|>`, id=46332) at the end of the prompt. ```python # MODEL plm_name = 'beomi/open-llama-2-ko-7b' adapter_name = 'traintogpb/llama-2-enko-translator-7b-qlora-adapter' model = LlamaForCausalLM.from_pretrained( plm_name, max_length=768, quantization_config=bnb_config, # Use the QLoRA config above attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16 ) model = PeftModel.from_pretrained( model, adapter_name, torch_dtype=torch.bfloat16 ) # TOKENIZER tokenizer = LlamaTokenizer.from_pretrained(plm_name) tokenizer.pad_token = "" tokenizer.pad_token_id = 2 tokenizer.eos_token = "<|endoftext|>" # Must be differentiated from the PAD token tokenizer.eos_token_id = 46332 tokenizer.add_eos_token = True tokenizer.model_max_length = 768 # INFERENCE text = "NMIXX is the world-best female idol group, who came back with the new song 'DASH'." prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:" inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True) # REMOVE EOS TOKEN IN THE PROMPT inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0) inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0) outputs = model.generate(**inputs, max_length=max_length, eos_token_id=46332) input_len = len(inputs['input_ids'].squeeze()) translated_text = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True) print(translated_text) ```