File size: 8,421 Bytes
47731b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from transformers import GPT2LMHeadModel, AutoTokenizer
from transformers import AdamW, get_scheduler, set_seed
from datasets import load_dataset
from accelerate import Accelerator
import datasets, transformers
from huggingface_hub import Repository

from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
from argparse import Namespace
import torch
import logging
import wandb
import time


class ConstantLengthDataset(IterableDataset):
    def __init__(self, tokenizer, dataset, seq_length=1024,
                 num_of_sequences=1024, chars_per_token=3.6):
        self.tokenizer = tokenizer
        self.concatenation_token_id = tokenizer.bos_token_id
        self.dataset = dataset
        self.seq_length = seq_length
        self.input_characters = seq_length * chars_per_token * num_of_sequences
        self.produced_samples = 0
    def __iter__(self):
        iterator = iter(self.dataset)
        more_examples = True
        while more_examples:
            buffer = []
            buffer_len = 0
            while True:
                if buffer_len >= self.input_characters:
                    break
                try:
                    buffer.append(next(iterator)['content'])
                    buffer_len += len(buffer[-1])
                except StopIteration:
                    more_examples = False
                    break
            tokenized_inputs = tokenizer(buffer, truncation=False)['input_ids']
            all_token_ids = []
            for tokenized_input in tokenized_inputs:
                all_token_ids.extend(tokenized_input + [self.concatenation_token_id])
            for i in range(0, len(all_token_ids), self.seq_length):
                input_ids = all_token_ids[i : i + self.seq_length]
                if len(input_ids) == self.seq_length:
                    yield torch.tensor(input_ids)

def setup_logging(project_name):
    logger = logging.getLogger(__name__)
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO,)
    if accelerator.is_main_process: # we only want to setup logging once
        wandb.init(project=project_name, config=args)
        run_name = wandb.run.name
        tb_writer = SummaryWriter()
        tb_writer.add_hparams(vars(args), {'0': 0})
        logger.setLevel(logging.INFO)
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        tb_writer = None
        run_name = ''
        logger.setLevel(logging.ERROR)
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    return logger, tb_writer, run_name

def create_dataloaders(dataset_name):
    train_data = load_dataset(dataset_name+'-train', split="train",
                              streaming=True)
    train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
                                    seed=args.seed)
    valid_data = load_dataset(dataset_name+'-valid', split="train",
                              streaming=True)
    train_dataset = ConstantLengthDataset(tokenizer, train_data,
                                          seq_length=args.seq_length)
    valid_dataset = ConstantLengthDataset(tokenizer, valid_data,
                                          seq_length=args.seq_length)
    train_dataloader=DataLoader(train_dataset, batch_size=args.train_batch_size)
    eval_dataloader=DataLoader(valid_dataset, batch_size=args.valid_batch_size)
    return train_dataloader, eval_dataloader

def get_grouped_params(model, no_decay=["bias", "LayerNorm.weight"]):
    params_with_wd, params_without_wd = [], []
    for n, p in model.named_parameters():
        if any(nd in n for nd in no_decay): params_without_wd.append(p)
        else: params_with_wd.append(p)
    return [{'params': params_with_wd, 'weight_decay': args.weight_decay},
            {'params': params_without_wd, 'weight_decay': 0.0}]

def log_metrics(step, metrics):
    logger.info(f"Step {step}: {metrics}")
    if accelerator.is_main_process:
        wandb.log(metrics)
        [tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]

def evaluate():
    model.eval()
    losses = []
    for step, batch in enumerate(eval_dataloader):
        with torch.no_grad():
            outputs = model(batch, labels=batch)
        loss = outputs.loss.repeat(args.valid_batch_size)
        losses.append(accelerator.gather(loss))
        if args.max_eval_steps > 0 and step >= args.max_eval_steps: break
    loss = torch.mean(torch.cat(losses))
    try: perplexity = torch.exp(loss)
    except OverflowError: perplexity = float("inf")
    return loss.item(), perplexity.item()

# Hyperparameters
project_name = 'transformersbook/codeparrot'
dataset_name = 'transformersbook/codeparrot'
config = {"train_batch_size": 4,
          "valid_batch_size": 4,
          "weight_decay": 0.1,
          "shuffle_buffer": 1000,
          "learning_rate": 5e-4,
          "lr_scheduler_type": "cosine",
          "num_warmup_steps": 1000,
          "gradient_accumulation_steps": 2,
          "max_train_steps": 24_000,
          "max_eval_steps": 500,
          "seq_length": 1024,
          "seed": 1,
          "save_checkpoint_steps":6_000,}
args = Namespace(**config)
set_seed(args.seed)

# Accelerator
accelerator = Accelerator()
samples_per_step = accelerator.state.num_processes * args.train_batch_size

# Logging
logger, tb_writer, run_name = setup_logging(project_name.split("/")[1])
logger.info(accelerator.state)

# Load model and tokenizer
if accelerator.is_main_process: # we only want to setup logging once
    hf_repo = Repository("./", clone_from=project_name, revision=run_name)
model = GPT2LMHeadModel.from_pretrained("./")
tokenizer = AutoTokenizer.from_pretrained("./")

# Load dataset and dataloader
train_dataloader, eval_dataloader = create_dataloaders(dataset_name)

# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model), lr=args.learning_rate)
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer,
                             num_warmup_steps=args.num_warmup_steps,
                             num_training_steps=args.max_train_steps,)
def get_lr(): return optimizer.param_groups[0]['lr']

# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
    model, optimizer, train_dataloader, eval_dataloader)

# Train model
model.train()
completed_steps = 0
t0 = time.time()
for step, batch in enumerate(train_dataloader, start=1):
    t1 = time.time()
    loss = model(batch, labels=batch).loss
    t2 = time.time()
    log_metrics(step, {'lr': get_lr(), 'samples': step*samples_per_step,
                       'steps': completed_steps, 'loss/train': loss.item()})
    loss = loss / args.gradient_accumulation_steps
    accelerator.backward(loss)
    t3 = time.time()
    if step % args.gradient_accumulation_steps == 0:
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
        completed_steps += 1
    if step % args.save_checkpoint_steps == 0:
        logger.info('Evaluating and saving model checkpoint')
        eval_loss, perplexity = evaluate()
        log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        if accelerator.is_main_process:
            unwrapped_model.save_pretrained("./")
            hf_repo.push_to_hub(commit_message=f'step {step}')
        model.train()
    if completed_steps >= args.max_train_steps:
        break
    t4 = time.time()
    #logger.info(f'ITER: {t1-t0:.3f}, FRWD: {t2-t1:.3f}, BKWD: {t3-t2:.3f}, OPT: {t4-t3:.3f}, ALL: {t4-t0}')
    t0 = time.time()

# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
eval_loss, perplexity = evaluate()
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
    unwrapped_model.save_pretrained("./")
    try: hf_repo.push_to_hub(commit_message=f'final model')
    except: logger.info('No changes to previously saved model.')