trbeers commited on
Commit
f4971b5
1 Parent(s): 1a3154a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,512 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:2036
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: distilbert/distilroberta-base
12
+ datasets: []
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: Proven ability to establish and lead complex projects and programs
26
+ within a multilayered, hierarchical organization.
27
+ sentences:
28
+ - Managed multiple concurrent projects in a large healthcare organization
29
+ - Assisted in project documentation without direct management responsibilities
30
+ - Skilled in creating presentations using Microsoft PowerPoint
31
+ - source_sentence: Experience in evaluating and planning projects to minimize scheduled
32
+ overtime requirements.
33
+ sentences:
34
+ - Validated release packages and coordinated Salesforce release cycles
35
+ - Oversaw daily housekeeping operations
36
+ - Successfully managed facility renovation projects to reduce overtime
37
+ - source_sentence: Candidates should have significant experience in a commercial construction
38
+ environment, ideally with a minimum of 10 years in the field.
39
+ sentences:
40
+ - Built strong partnerships with cross-functional teams to deliver projects
41
+ - over 12 years of experience managing commercial construction projects
42
+ - 2 years of experience in residential construction
43
+ - source_sentence: Possession of strong leadership skills in a Workday professional
44
+ context.
45
+ sentences:
46
+ - 3 years of experience with cardiac mapping technologies
47
+ - Managed Workday implementation projects and trained team members
48
+ - Developed marketing strategies for new products
49
+ - source_sentence: Ability to manage TikTok Shop setup and troubleshoot operational
50
+ issues effectively.
51
+ sentences:
52
+ - Troubleshot various operational issues during the setup of a TikTok Shop
53
+ - Handled customer support queries for social media platforms
54
+ - Consistently maintained client trust through transparent communication
55
+ pipeline_tag: sentence-similarity
56
+ model-index:
57
+ - name: SentenceTransformer based on distilbert/distilroberta-base
58
+ results:
59
+ - task:
60
+ type: semantic-similarity
61
+ name: Semantic Similarity
62
+ dataset:
63
+ name: sts dev
64
+ type: sts-dev
65
+ metrics:
66
+ - type: pearson_cosine
67
+ value: 0.7648934072908906
68
+ name: Pearson Cosine
69
+ - type: spearman_cosine
70
+ value: 0.7804762875391312
71
+ name: Spearman Cosine
72
+ - type: pearson_manhattan
73
+ value: 0.7679148495261325
74
+ name: Pearson Manhattan
75
+ - type: spearman_manhattan
76
+ value: 0.76763834201618
77
+ name: Spearman Manhattan
78
+ - type: pearson_euclidean
79
+ value: 0.7662522690859208
80
+ name: Pearson Euclidean
81
+ - type: spearman_euclidean
82
+ value: 0.7664213152704937
83
+ name: Spearman Euclidean
84
+ - type: pearson_dot
85
+ value: 0.45916097674624634
86
+ name: Pearson Dot
87
+ - type: spearman_dot
88
+ value: 0.4523102899073801
89
+ name: Spearman Dot
90
+ - type: pearson_max
91
+ value: 0.7679148495261325
92
+ name: Pearson Max
93
+ - type: spearman_max
94
+ value: 0.7804762875391312
95
+ name: Spearman Max
96
+ - task:
97
+ type: semantic-similarity
98
+ name: Semantic Similarity
99
+ dataset:
100
+ name: sts test
101
+ type: sts-test
102
+ metrics:
103
+ - type: pearson_cosine
104
+ value: 0.716782585664628
105
+ name: Pearson Cosine
106
+ - type: spearman_cosine
107
+ value: 0.7026933640919135
108
+ name: Spearman Cosine
109
+ - type: pearson_manhattan
110
+ value: 0.7172025512970919
111
+ name: Pearson Manhattan
112
+ - type: spearman_manhattan
113
+ value: 0.6972416685539203
114
+ name: Spearman Manhattan
115
+ - type: pearson_euclidean
116
+ value: 0.7148825937289236
117
+ name: Pearson Euclidean
118
+ - type: spearman_euclidean
119
+ value: 0.6948642143635732
120
+ name: Spearman Euclidean
121
+ - type: pearson_dot
122
+ value: 0.4194725128577338
123
+ name: Pearson Dot
124
+ - type: spearman_dot
125
+ value: 0.4186318420591598
126
+ name: Spearman Dot
127
+ - type: pearson_max
128
+ value: 0.7172025512970919
129
+ name: Pearson Max
130
+ - type: spearman_max
131
+ value: 0.7026933640919135
132
+ name: Spearman Max
133
+ ---
134
+
135
+ # SentenceTransformer based on distilbert/distilroberta-base
136
+
137
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
138
+
139
+ ## Model Details
140
+
141
+ ### Model Description
142
+ - **Model Type:** Sentence Transformer
143
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
144
+ - **Maximum Sequence Length:** 512 tokens
145
+ - **Output Dimensionality:** 768 tokens
146
+ - **Similarity Function:** Cosine Similarity
147
+ <!-- - **Training Dataset:** Unknown -->
148
+ <!-- - **Language:** Unknown -->
149
+ <!-- - **License:** Unknown -->
150
+
151
+ ### Model Sources
152
+
153
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
154
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
155
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
156
+
157
+ ### Full Model Architecture
158
+
159
+ ```
160
+ SentenceTransformer(
161
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
162
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
163
+ )
164
+ ```
165
+
166
+ ## Usage
167
+
168
+ ### Direct Usage (Sentence Transformers)
169
+
170
+ First install the Sentence Transformers library:
171
+
172
+ ```bash
173
+ pip install -U sentence-transformers
174
+ ```
175
+
176
+ Then you can load this model and run inference.
177
+ ```python
178
+ from sentence_transformers import SentenceTransformer
179
+
180
+ # Download from the 🤗 Hub
181
+ model = SentenceTransformer("trbeers/distilroberta-base-nli-v0")
182
+ # Run inference
183
+ sentences = [
184
+ 'Ability to manage TikTok Shop setup and troubleshoot operational issues effectively.',
185
+ 'Troubleshot various operational issues during the setup of a TikTok Shop',
186
+ 'Handled customer support queries for social media platforms',
187
+ ]
188
+ embeddings = model.encode(sentences)
189
+ print(embeddings.shape)
190
+ # [3, 768]
191
+
192
+ # Get the similarity scores for the embeddings
193
+ similarities = model.similarity(embeddings, embeddings)
194
+ print(similarities.shape)
195
+ # [3, 3]
196
+ ```
197
+
198
+ <!--
199
+ ### Direct Usage (Transformers)
200
+
201
+ <details><summary>Click to see the direct usage in Transformers</summary>
202
+
203
+ </details>
204
+ -->
205
+
206
+ <!--
207
+ ### Downstream Usage (Sentence Transformers)
208
+
209
+ You can finetune this model on your own dataset.
210
+
211
+ <details><summary>Click to expand</summary>
212
+
213
+ </details>
214
+ -->
215
+
216
+ <!--
217
+ ### Out-of-Scope Use
218
+
219
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
220
+ -->
221
+
222
+ ## Evaluation
223
+
224
+ ### Metrics
225
+
226
+ #### Semantic Similarity
227
+ * Dataset: `sts-dev`
228
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
229
+
230
+ | Metric | Value |
231
+ |:--------------------|:-----------|
232
+ | pearson_cosine | 0.7649 |
233
+ | **spearman_cosine** | **0.7805** |
234
+ | pearson_manhattan | 0.7679 |
235
+ | spearman_manhattan | 0.7676 |
236
+ | pearson_euclidean | 0.7663 |
237
+ | spearman_euclidean | 0.7664 |
238
+ | pearson_dot | 0.4592 |
239
+ | spearman_dot | 0.4523 |
240
+ | pearson_max | 0.7679 |
241
+ | spearman_max | 0.7805 |
242
+
243
+ #### Semantic Similarity
244
+ * Dataset: `sts-test`
245
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
246
+
247
+ | Metric | Value |
248
+ |:--------------------|:-----------|
249
+ | pearson_cosine | 0.7168 |
250
+ | **spearman_cosine** | **0.7027** |
251
+ | pearson_manhattan | 0.7172 |
252
+ | spearman_manhattan | 0.6972 |
253
+ | pearson_euclidean | 0.7149 |
254
+ | spearman_euclidean | 0.6949 |
255
+ | pearson_dot | 0.4195 |
256
+ | spearman_dot | 0.4186 |
257
+ | pearson_max | 0.7172 |
258
+ | spearman_max | 0.7027 |
259
+
260
+ <!--
261
+ ## Bias, Risks and Limitations
262
+
263
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
264
+ -->
265
+
266
+ <!--
267
+ ### Recommendations
268
+
269
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
270
+ -->
271
+
272
+ ## Training Details
273
+
274
+ ### Training Dataset
275
+
276
+ #### Unnamed Dataset
277
+
278
+
279
+ * Size: 2,036 training samples
280
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
281
+ * Approximate statistics based on the first 1000 samples:
282
+ | | anchor | positive | negative |
283
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
284
+ | type | string | string | string |
285
+ | details | <ul><li>min: 7 tokens</li><li>mean: 16.49 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.04 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.27 tokens</li><li>max: 15 tokens</li></ul> |
286
+ * Samples:
287
+ | anchor | positive | negative |
288
+ |:-----------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|
289
+ | <code>Sensitivity to the needs of patients, families, and physicians to deliver compassionate care.</code> | <code>worked closely with families to address patient concerns</code> | <code>specialized in technical equipment management without direct patient contact</code> |
290
+ | <code>Ability to lift 25 lbs. or more as required for handling athletic equipment.</code> | <code>Handled and organized equipment, ensuring safe lifting of heavy items</code> | <code>Coordinated scheduling for team practices and meetings</code> |
291
+ | <code>The candidate should have significant development experience, preferably around 10 years.</code> | <code>developed and implemented data architecture projects for a decade</code> | <code>worked in customer service for 5 years</code> |
292
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
293
+ ```json
294
+ {
295
+ "scale": 20.0,
296
+ "similarity_fct": "cos_sim"
297
+ }
298
+ ```
299
+
300
+ ### Evaluation Dataset
301
+
302
+ #### Unnamed Dataset
303
+
304
+
305
+ * Size: 510 evaluation samples
306
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
307
+ * Approximate statistics based on the first 1000 samples:
308
+ | | anchor | positive | negative |
309
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
310
+ | type | string | string | string |
311
+ | details | <ul><li>min: 8 tokens</li><li>mean: 16.8 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.08 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.28 tokens</li><li>max: 16 tokens</li></ul> |
312
+ * Samples:
313
+ | anchor | positive | negative |
314
+ |:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------|
315
+ | <code>Qualified to provide personalized and friendly client interactions</code> | <code>Assisted clients with inquiries and ensured a welcoming environment</code> | <code>Conducted market research for product development</code> |
316
+ | <code>Understanding of network architecture principles and design patterns is critical.</code> | <code>Designed and implemented network architectures for cloud-based solutions</code> | <code>Managed on-premises server infrastructure</code> |
317
+ | <code>Knowledge of cloud technologies and their implications for customer engagement.</code> | <code>Managed customer onboarding for cloud-based services</code> | <code>Handled sales inquiries for software licenses</code> |
318
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
319
+ ```json
320
+ {
321
+ "scale": 20.0,
322
+ "similarity_fct": "cos_sim"
323
+ }
324
+ ```
325
+
326
+ ### Training Hyperparameters
327
+ #### Non-Default Hyperparameters
328
+
329
+ - `eval_strategy`: steps
330
+ - `per_device_train_batch_size`: 128
331
+ - `per_device_eval_batch_size`: 128
332
+ - `num_train_epochs`: 1
333
+ - `warmup_ratio`: 0.1
334
+ - `batch_sampler`: no_duplicates
335
+
336
+ #### All Hyperparameters
337
+ <details><summary>Click to expand</summary>
338
+
339
+ - `overwrite_output_dir`: False
340
+ - `do_predict`: False
341
+ - `eval_strategy`: steps
342
+ - `prediction_loss_only`: True
343
+ - `per_device_train_batch_size`: 128
344
+ - `per_device_eval_batch_size`: 128
345
+ - `per_gpu_train_batch_size`: None
346
+ - `per_gpu_eval_batch_size`: None
347
+ - `gradient_accumulation_steps`: 1
348
+ - `eval_accumulation_steps`: None
349
+ - `learning_rate`: 5e-05
350
+ - `weight_decay`: 0.0
351
+ - `adam_beta1`: 0.9
352
+ - `adam_beta2`: 0.999
353
+ - `adam_epsilon`: 1e-08
354
+ - `max_grad_norm`: 1.0
355
+ - `num_train_epochs`: 1
356
+ - `max_steps`: -1
357
+ - `lr_scheduler_type`: linear
358
+ - `lr_scheduler_kwargs`: {}
359
+ - `warmup_ratio`: 0.1
360
+ - `warmup_steps`: 0
361
+ - `log_level`: passive
362
+ - `log_level_replica`: warning
363
+ - `log_on_each_node`: True
364
+ - `logging_nan_inf_filter`: True
365
+ - `save_safetensors`: True
366
+ - `save_on_each_node`: False
367
+ - `save_only_model`: False
368
+ - `restore_callback_states_from_checkpoint`: False
369
+ - `no_cuda`: False
370
+ - `use_cpu`: False
371
+ - `use_mps_device`: False
372
+ - `seed`: 42
373
+ - `data_seed`: None
374
+ - `jit_mode_eval`: False
375
+ - `use_ipex`: False
376
+ - `bf16`: False
377
+ - `fp16`: False
378
+ - `fp16_opt_level`: O1
379
+ - `half_precision_backend`: auto
380
+ - `bf16_full_eval`: False
381
+ - `fp16_full_eval`: False
382
+ - `tf32`: None
383
+ - `local_rank`: 0
384
+ - `ddp_backend`: None
385
+ - `tpu_num_cores`: None
386
+ - `tpu_metrics_debug`: False
387
+ - `debug`: []
388
+ - `dataloader_drop_last`: False
389
+ - `dataloader_num_workers`: 0
390
+ - `dataloader_prefetch_factor`: None
391
+ - `past_index`: -1
392
+ - `disable_tqdm`: False
393
+ - `remove_unused_columns`: True
394
+ - `label_names`: None
395
+ - `load_best_model_at_end`: False
396
+ - `ignore_data_skip`: False
397
+ - `fsdp`: []
398
+ - `fsdp_min_num_params`: 0
399
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
400
+ - `fsdp_transformer_layer_cls_to_wrap`: None
401
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
402
+ - `deepspeed`: None
403
+ - `label_smoothing_factor`: 0.0
404
+ - `optim`: adamw_torch
405
+ - `optim_args`: None
406
+ - `adafactor`: False
407
+ - `group_by_length`: False
408
+ - `length_column_name`: length
409
+ - `ddp_find_unused_parameters`: None
410
+ - `ddp_bucket_cap_mb`: None
411
+ - `ddp_broadcast_buffers`: False
412
+ - `dataloader_pin_memory`: True
413
+ - `dataloader_persistent_workers`: False
414
+ - `skip_memory_metrics`: True
415
+ - `use_legacy_prediction_loop`: False
416
+ - `push_to_hub`: False
417
+ - `resume_from_checkpoint`: None
418
+ - `hub_model_id`: None
419
+ - `hub_strategy`: every_save
420
+ - `hub_private_repo`: False
421
+ - `hub_always_push`: False
422
+ - `gradient_checkpointing`: False
423
+ - `gradient_checkpointing_kwargs`: None
424
+ - `include_inputs_for_metrics`: False
425
+ - `eval_do_concat_batches`: True
426
+ - `fp16_backend`: auto
427
+ - `push_to_hub_model_id`: None
428
+ - `push_to_hub_organization`: None
429
+ - `mp_parameters`:
430
+ - `auto_find_batch_size`: False
431
+ - `full_determinism`: False
432
+ - `torchdynamo`: None
433
+ - `ray_scope`: last
434
+ - `ddp_timeout`: 1800
435
+ - `torch_compile`: False
436
+ - `torch_compile_backend`: None
437
+ - `torch_compile_mode`: None
438
+ - `dispatch_batches`: None
439
+ - `split_batches`: None
440
+ - `include_tokens_per_second`: False
441
+ - `include_num_input_tokens_seen`: False
442
+ - `neftune_noise_alpha`: None
443
+ - `optim_target_modules`: None
444
+ - `batch_eval_metrics`: False
445
+ - `batch_sampler`: no_duplicates
446
+ - `multi_dataset_batch_sampler`: proportional
447
+
448
+ </details>
449
+
450
+ ### Training Logs
451
+ | Epoch | Step | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
452
+ |:-----:|:----:|:------:|:-----------------------:|:------------------------:|
453
+ | 0 | 0 | - | 0.6375 | - |
454
+ | 0.625 | 10 | 2.0178 | 0.7805 | - |
455
+ | 1.0 | 16 | - | - | 0.7027 |
456
+
457
+
458
+ ### Framework Versions
459
+ - Python: 3.10.11
460
+ - Sentence Transformers: 3.0.1
461
+ - Transformers: 4.41.2
462
+ - PyTorch: 2.3.1
463
+ - Accelerate: 0.31.0
464
+ - Datasets: 2.19.1
465
+ - Tokenizers: 0.19.1
466
+
467
+ ## Citation
468
+
469
+ ### BibTeX
470
+
471
+ #### Sentence Transformers
472
+ ```bibtex
473
+ @inproceedings{reimers-2019-sentence-bert,
474
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
475
+ author = "Reimers, Nils and Gurevych, Iryna",
476
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
477
+ month = "11",
478
+ year = "2019",
479
+ publisher = "Association for Computational Linguistics",
480
+ url = "https://arxiv.org/abs/1908.10084",
481
+ }
482
+ ```
483
+
484
+ #### MultipleNegativesRankingLoss
485
+ ```bibtex
486
+ @misc{henderson2017efficient,
487
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
488
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
489
+ year={2017},
490
+ eprint={1705.00652},
491
+ archivePrefix={arXiv},
492
+ primaryClass={cs.CL}
493
+ }
494
+ ```
495
+
496
+ <!--
497
+ ## Glossary
498
+
499
+ *Clearly define terms in order to be accessible across audiences.*
500
+ -->
501
+
502
+ <!--
503
+ ## Model Card Authors
504
+
505
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
506
+ -->
507
+
508
+ <!--
509
+ ## Model Card Contact
510
+
511
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
512
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.2",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acd9b03952fcdbff297378fa77a060d33a86a9f5fe85dcc8c752fc8b38009a7d
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff