trickstar0 commited on
Commit
4a61a5b
1 Parent(s): e624c7a

End of training

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -14,15 +14,15 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.1569
18
- - Location: {'precision': 0.8888888888888888, 'recall': 0.6153846153846154, 'f1': 0.7272727272727274, 'number': 13}
19
- - Miscellaneous: {'precision': 0.6255506607929515, 'recall': 0.7029702970297029, 'f1': 0.662004662004662, 'number': 202}
20
- - Organization: {'precision': 0.723404255319149, 'recall': 0.7906976744186046, 'f1': 0.7555555555555555, 'number': 43}
21
- - Person: {'precision': 0.3157894736842105, 'recall': 0.3157894736842105, 'f1': 0.3157894736842105, 'number': 19}
22
- - Overall Precision: 0.6291
23
- - Overall Recall: 0.6859
24
- - Overall F1: 0.6563
25
- - Overall Accuracy: 0.9587
26
 
27
  ## Model description
28
 
@@ -51,11 +51,11 @@ The following hyperparameters were used during training:
51
 
52
  ### Training results
53
 
54
- | Training Loss | Epoch | Step | Validation Loss | Location | Miscellaneous | Organization | Person | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
55
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
56
- | No log | 1.0 | 220 | 0.1317 | {'precision': 0.6666666666666666, 'recall': 0.46153846153846156, 'f1': 0.5454545454545455, 'number': 13} | {'precision': 0.5213675213675214, 'recall': 0.6039603960396039, 'f1': 0.5596330275229358, 'number': 202} | {'precision': 0.38028169014084506, 'recall': 0.627906976744186, 'f1': 0.4736842105263158, 'number': 43} | {'precision': 0.23809523809523808, 'recall': 0.2631578947368421, 'f1': 0.25, 'number': 19} | 0.4776 | 0.5776 | 0.5229 | 0.9504 |
57
- | No log | 2.0 | 440 | 0.1513 | {'precision': 0.6, 'recall': 0.46153846153846156, 'f1': 0.5217391304347826, 'number': 13} | {'precision': 0.6008403361344538, 'recall': 0.7079207920792079, 'f1': 0.65, 'number': 202} | {'precision': 0.6538461538461539, 'recall': 0.7906976744186046, 'f1': 0.7157894736842104, 'number': 43} | {'precision': 0.3333333333333333, 'recall': 0.3157894736842105, 'f1': 0.3243243243243243, 'number': 19} | 0.5943 | 0.6823 | 0.6353 | 0.9564 |
58
- | 0.1164 | 3.0 | 660 | 0.1569 | {'precision': 0.8888888888888888, 'recall': 0.6153846153846154, 'f1': 0.7272727272727274, 'number': 13} | {'precision': 0.6255506607929515, 'recall': 0.7029702970297029, 'f1': 0.662004662004662, 'number': 202} | {'precision': 0.723404255319149, 'recall': 0.7906976744186046, 'f1': 0.7555555555555555, 'number': 43} | {'precision': 0.3157894736842105, 'recall': 0.3157894736842105, 'f1': 0.3157894736842105, 'number': 19} | 0.6291 | 0.6859 | 0.6563 | 0.9587 |
59
 
60
 
61
  ### Framework versions
 
14
 
15
  This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.0985
18
+ - Location: {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}
19
+ - Miscellaneous: {'precision': 0.6069651741293532, 'recall': 0.7176470588235294, 'f1': 0.6576819407008085, 'number': 170}
20
+ - Organization: {'precision': 0.4166666666666667, 'recall': 0.5769230769230769, 'f1': 0.48387096774193544, 'number': 26}
21
+ - Person: {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10}
22
+ - Overall Precision: 0.5863
23
+ - Overall Recall: 0.6887
24
+ - Overall F1: 0.6334
25
+ - Overall Accuracy: 0.9702
26
 
27
  ## Model description
28
 
 
51
 
52
  ### Training results
53
 
54
+ | Training Loss | Epoch | Step | Validation Loss | Location | Miscellaneous | Organization | Person | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
56
+ | No log | 1.0 | 269 | 0.1088 | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 0.46311475409836067, 'recall': 0.6647058823529411, 'f1': 0.5458937198067633, 'number': 170} | {'precision': 0.3333333333333333, 'recall': 0.46153846153846156, 'f1': 0.3870967741935484, 'number': 26} | {'precision': 0.6666666666666666, 'recall': 0.6, 'f1': 0.631578947368421, 'number': 10} | 0.4573 | 0.6321 | 0.5307 | 0.9631 |
57
+ | 0.1453 | 2.0 | 538 | 0.0948 | {'precision': 1.0, 'recall': 0.5, 'f1': 0.6666666666666666, 'number': 6} | {'precision': 0.5525114155251142, 'recall': 0.711764705882353, 'f1': 0.622107969151671, 'number': 170} | {'precision': 0.42424242424242425, 'recall': 0.5384615384615384, 'f1': 0.47457627118644075, 'number': 26} | {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10} | 0.5475 | 0.6792 | 0.6063 | 0.9654 |
58
+ | 0.1453 | 3.0 | 807 | 0.0985 | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 0.6069651741293532, 'recall': 0.7176470588235294, 'f1': 0.6576819407008085, 'number': 170} | {'precision': 0.4166666666666667, 'recall': 0.5769230769230769, 'f1': 0.48387096774193544, 'number': 26} | {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10} | 0.5863 | 0.6887 | 0.6334 | 0.9702 |
59
 
60
 
61
  ### Framework versions