trickstar0
commited on
Commit
•
4a61a5b
1
Parent(s):
e624c7a
End of training
Browse files
README.md
CHANGED
@@ -14,15 +14,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Location: {'precision': 0.
|
19 |
-
- Miscellaneous: {'precision': 0.
|
20 |
-
- Organization: {'precision': 0.
|
21 |
-
- Person: {'precision': 0.
|
22 |
-
- Overall Precision: 0.
|
23 |
-
- Overall Recall: 0.
|
24 |
-
- Overall F1: 0.
|
25 |
-
- Overall Accuracy: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -51,11 +51,11 @@ The following hyperparameters were used during training:
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step | Validation Loss | Location
|
55 |
-
|
56 |
-
| No log | 1.0 |
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
|
60 |
|
61 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0985
|
18 |
+
- Location: {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}
|
19 |
+
- Miscellaneous: {'precision': 0.6069651741293532, 'recall': 0.7176470588235294, 'f1': 0.6576819407008085, 'number': 170}
|
20 |
+
- Organization: {'precision': 0.4166666666666667, 'recall': 0.5769230769230769, 'f1': 0.48387096774193544, 'number': 26}
|
21 |
+
- Person: {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10}
|
22 |
+
- Overall Precision: 0.5863
|
23 |
+
- Overall Recall: 0.6887
|
24 |
+
- Overall F1: 0.6334
|
25 |
+
- Overall Accuracy: 0.9702
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Location | Miscellaneous | Organization | Person | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
56 |
+
| No log | 1.0 | 269 | 0.1088 | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 0.46311475409836067, 'recall': 0.6647058823529411, 'f1': 0.5458937198067633, 'number': 170} | {'precision': 0.3333333333333333, 'recall': 0.46153846153846156, 'f1': 0.3870967741935484, 'number': 26} | {'precision': 0.6666666666666666, 'recall': 0.6, 'f1': 0.631578947368421, 'number': 10} | 0.4573 | 0.6321 | 0.5307 | 0.9631 |
|
57 |
+
| 0.1453 | 2.0 | 538 | 0.0948 | {'precision': 1.0, 'recall': 0.5, 'f1': 0.6666666666666666, 'number': 6} | {'precision': 0.5525114155251142, 'recall': 0.711764705882353, 'f1': 0.622107969151671, 'number': 170} | {'precision': 0.42424242424242425, 'recall': 0.5384615384615384, 'f1': 0.47457627118644075, 'number': 26} | {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10} | 0.5475 | 0.6792 | 0.6063 | 0.9654 |
|
58 |
+
| 0.1453 | 3.0 | 807 | 0.0985 | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} | {'precision': 0.6069651741293532, 'recall': 0.7176470588235294, 'f1': 0.6576819407008085, 'number': 170} | {'precision': 0.4166666666666667, 'recall': 0.5769230769230769, 'f1': 0.48387096774193544, 'number': 26} | {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10} | 0.5863 | 0.6887 | 0.6334 | 0.9702 |
|
59 |
|
60 |
|
61 |
### Framework versions
|