File size: 3,198 Bytes
29a9f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
base_model: uitnlp/visobert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: VP_ViSoBERT_syl_ViWikiFC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VP_ViSoBERT_syl_ViWikiFC
This model is a fine-tuned version of [uitnlp/visobert](https://huggingface.co/uitnlp/visobert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9243
- Accuracy: 0.6364
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1299 | 0.1 | 100 | 1.1182 | 0.3411 |
| 1.0816 | 0.19 | 200 | 1.0678 | 0.3976 |
| 1.0181 | 0.29 | 300 | 1.0163 | 0.4823 |
| 1.0121 | 0.38 | 400 | 0.9956 | 0.5072 |
| 0.9617 | 0.48 | 500 | 0.9718 | 0.5048 |
| 0.9297 | 0.57 | 600 | 0.9665 | 0.5239 |
| 0.9332 | 0.67 | 700 | 0.9252 | 0.5646 |
| 0.9057 | 0.76 | 800 | 0.9667 | 0.5421 |
| 0.8756 | 0.86 | 900 | 0.8884 | 0.5871 |
| 0.879 | 0.96 | 1000 | 0.8907 | 0.5718 |
| 0.8249 | 1.05 | 1100 | 0.8793 | 0.5981 |
| 0.7177 | 1.15 | 1200 | 0.8951 | 0.5957 |
| 0.7145 | 1.24 | 1300 | 0.9523 | 0.6062 |
| 0.7469 | 1.34 | 1400 | 0.9001 | 0.5986 |
| 0.7358 | 1.43 | 1500 | 0.8865 | 0.6081 |
| 0.7112 | 1.53 | 1600 | 0.9099 | 0.6057 |
| 0.7299 | 1.62 | 1700 | 0.8496 | 0.6144 |
| 0.6949 | 1.72 | 1800 | 0.8580 | 0.6124 |
| 0.6988 | 1.81 | 1900 | 0.8840 | 0.6215 |
| 0.6524 | 1.91 | 2000 | 0.8753 | 0.6134 |
| 0.6914 | 2.01 | 2100 | 0.8729 | 0.6330 |
| 0.5427 | 2.1 | 2200 | 0.9494 | 0.6431 |
| 0.5628 | 2.2 | 2300 | 0.9531 | 0.6120 |
| 0.5607 | 2.29 | 2400 | 0.9050 | 0.6340 |
| 0.5396 | 2.39 | 2500 | 0.9149 | 0.6335 |
| 0.5178 | 2.48 | 2600 | 0.9848 | 0.6124 |
| 0.5322 | 2.58 | 2700 | 0.9198 | 0.6330 |
| 0.5406 | 2.67 | 2800 | 0.9206 | 0.6364 |
| 0.5183 | 2.77 | 2900 | 0.9150 | 0.6392 |
| 0.5369 | 2.87 | 3000 | 0.9200 | 0.6340 |
| 0.5105 | 2.96 | 3100 | 0.9243 | 0.6364 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|