--- license: llama3.1 datasets: - trollek/Danoia-v03 - trollek/Danoia-v02 - N8Programs/CreativeGPT - Gryphe/Opus-WritingPrompts language: - da - en base_model: - unsloth/Meta-Llama-3.1-8B-Instruct library_name: transformers tags: - llama-factory - unsloth --- # Llama 3.1 8B Danoia This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the danoia_v03, the opus_writing_instruct, the creativegpt and the danoia_v02_no_system datasets + some private datasets related to evaluation. It achieves the following results on the evaluation set: - Loss: 0.7108 ## Model description This model can write stories in danish and english. It can do much more, I am sure of it, but not more than the vanilla model it is based on. ## Intended uses & limitations Danoia is intended to be private assistant able to write essays, summarise articles, and be a helpful assistant in general. It misspells danish words at times but it is rare though. ## Training and evaluation data I trained this using [LLama-Factory](https://github.com/hiyouga/LLaMA-Factory "LLama Factorys' GitHub") with [unsloth](https://github.com/unslothai/unsloth "unsloths' GitHub") enabled on a 16GB 4060 Ti. It took 30 hours and peaked at 13GB VRAM usage.
Show LLama-Factory config ```yaml ### model model_name_or_path: unsloth/Meta-Llama-3.1-8B-Instruct ### method stage: sft do_train: true finetuning_type: lora lora_target: all loraplus_lr_ratio: 16.0 lora_rank: 16 lora_alpha: 32 use_unsloth: true use_unsloth_gc: true quantization_bit: 4 upcast_layernorm: true seed: 192 ### dataset dataset: danoia_v03,opus_writing_instruct,creativegpt,danoia_v02_no_system template: llama3 cutoff_len: 8192 overwrite_cache: false preprocessing_num_workers: 12 ### output output_dir: llama31/8b_instruct/loras/danoia logging_steps: 1 save_steps: 500 save_strategy: steps plot_loss: true overwrite_output_dir: false ### train per_device_train_batch_size: 2 gradient_accumulation_steps: 4 learning_rate: 1.5e-5 num_train_epochs: 1.5 lr_scheduler_type: cosine warmup_ratio: 0.01 bf16: true ## eval val_size: 0.01 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 500 ```
## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 192 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 1.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.2352 | 0.0719 | 500 | 0.8450 | | 0.1742 | 0.1438 | 1000 | 0.8090 | | 0.1667 | 0.2156 | 1500 | 0.7889 | | 0.3791 | 0.2875 | 2000 | 0.7750 | | 0.1989 | 0.3594 | 2500 | 0.7665 | | 0.2347 | 0.4313 | 3000 | 0.7563 | | 0.1694 | 0.5032 | 3500 | 0.7498 | | 0.2351 | 0.5750 | 4000 | 0.7412 | | 0.2322 | 0.6469 | 4500 | 0.7363 | | 0.1689 | 0.7188 | 5000 | 0.7298 | | 0.1953 | 0.7907 | 5500 | 0.7250 | | 0.2099 | 0.8626 | 6000 | 0.7214 | | 0.2368 | 0.9344 | 6500 | 0.7166 | | 0.1632 | 1.0063 | 7000 | 0.7151 | | 0.1558 | 1.0782 | 7500 | 0.7157 | | 0.2854 | 1.1501 | 8000 | 0.7139 | | 0.199 | 1.2220 | 8500 | 0.7127 | | 0.1606 | 1.2938 | 9000 | 0.7117 | | 0.1788 | 1.3657 | 9500 | 0.7112 | | 0.2618 | 1.4376 | 10000 | 0.7109 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3