--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - trl - sft - generated_from_trainer model-index: - name: l3.1-8b-inst-fft-induction-barc-heavy-200k-lr1e-5-ep2 results: [] --- # l3.1-8b-inst-fft-induction-barc-heavy-200k-lr1e-5-ep2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4824 | 1.0 | 1478 | 0.4727 | | 0.3638 | 2.0 | 2956 | 0.4042 | | 0.2835 | 3.0 | 4434 | 0.3992 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3