--- library_name: peft license: mit base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B tags: - axolotl - generated_from_trainer model-index: - name: d48f8af9-c694-4286-b500-32b7a9273208 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6588e3dccd54f9a1_train_data.json ds_type: json format: custom path: /workspace/input_data/6588e3dccd54f9a1_train_data.json type: field_input: text field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: tuantmdev/d48f8af9-c694-4286-b500-32b7a9273208 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2e-05 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/6588e3dccd54f9a1_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_strategy: best saves_per_epoch: 5 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 46a4a112-eb3e-4209-864d-e697f32e697e wandb_project: Gradients-On-Demand wandb_run: unknown wandb_runid: 46a4a112-eb3e-4209-864d-e697f32e697e warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# d48f8af9-c694-4286-b500-32b7a9273208 This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0033 | 1 | 1.1200 | | 18.1265 | 0.0327 | 10 | 1.1170 | | 18.3837 | 0.0655 | 20 | 1.0932 | | 16.9387 | 0.0982 | 30 | 1.0442 | | 16.2983 | 0.1309 | 40 | 1.0095 | | 16.0078 | 0.1636 | 50 | 1.0038 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1