Add docs about using my fork and add more monkey patches
Browse files
README.md
CHANGED
@@ -8,11 +8,19 @@ This is the model Whisper large-v3 converted to be used in [faster-whisper](http
|
|
8 |
|
9 |
## Using
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
```shell
|
12 |
-
pip install -U '
|
13 |
```
|
14 |
|
15 |
-
Then,
|
16 |
|
17 |
```python
|
18 |
import time
|
@@ -20,27 +28,96 @@ import time
|
|
20 |
import faster_whisper
|
21 |
|
22 |
|
23 |
-
faster_whisper.utils._MODELS["large-v3"] = "turicas/faster-whisper-large-v3" # Monkey patch
|
24 |
-
|
25 |
filename = "my-audio.mp3"
|
|
|
26 |
word_timestamps = False
|
27 |
vad_filter = True
|
28 |
temperature = 0.0
|
29 |
language = "pt"
|
30 |
model_size = "large-v3"
|
31 |
-
device, compute_type = "cuda", "float16"
|
|
|
32 |
|
33 |
model = faster_whisper.WhisperModel(model_size, device=device, compute_type=compute_type)
|
34 |
-
if model_size == "large-v3": # More monkey patch
|
35 |
-
model.feature_extractor.mel_filters = model.feature_extractor.get_mel_filters(model.feature_extractor.sampling_rate, model.feature_extractor.n_fft, n_mels=128)
|
36 |
|
37 |
-
# TODO: for some reason it's translating, not transcribing
|
38 |
segments, transcription_info = model.transcribe(
|
39 |
filename,
|
40 |
word_timestamps=word_timestamps,
|
41 |
vad_filter=vad_filter,
|
42 |
temperature=temperature,
|
43 |
language=language,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
print(transcription_info)
|
46 |
|
@@ -76,4 +153,4 @@ Then, the files will be at `whisper-large-v3-ct2/`.
|
|
76 |
## License
|
77 |
|
78 |
These files have the same license as the original [openai/whisper-large-v3
|
79 |
-
model](https://huggingface.co/openai/whisper-large): Apache 2.0.
|
|
|
8 |
|
9 |
## Using
|
10 |
|
11 |
+
You can choose between monkey-patching faster-whisper 0.9.0 (while they don't update it) or using my fork (which is
|
12 |
+
easier).
|
13 |
+
|
14 |
+
|
15 |
+
### Using my fork
|
16 |
+
|
17 |
+
First, install it by executing:
|
18 |
+
|
19 |
```shell
|
20 |
+
pip install -U 'transformers[torch]>=4.35.0' https://github.com/PythonicCafe/faster-whisper/archive/refs/heads/feature/large-v3.zip#egg=faster-whisper
|
21 |
```
|
22 |
|
23 |
+
Then, use it as the regular faster-whisper:
|
24 |
|
25 |
```python
|
26 |
import time
|
|
|
28 |
import faster_whisper
|
29 |
|
30 |
|
|
|
|
|
31 |
filename = "my-audio.mp3"
|
32 |
+
initial_prompt = "My podcast recording" # Or `None`
|
33 |
word_timestamps = False
|
34 |
vad_filter = True
|
35 |
temperature = 0.0
|
36 |
language = "pt"
|
37 |
model_size = "large-v3"
|
38 |
+
device, compute_type = "cuda", "float16"
|
39 |
+
# or: device, compute_type = "cpu", "float32"
|
40 |
|
41 |
model = faster_whisper.WhisperModel(model_size, device=device, compute_type=compute_type)
|
|
|
|
|
42 |
|
|
|
43 |
segments, transcription_info = model.transcribe(
|
44 |
filename,
|
45 |
word_timestamps=word_timestamps,
|
46 |
vad_filter=vad_filter,
|
47 |
temperature=temperature,
|
48 |
language=language,
|
49 |
+
initial_prompt=initial_prompt,
|
50 |
+
)
|
51 |
+
print(transcription_info)
|
52 |
+
|
53 |
+
start_time = time.time()
|
54 |
+
for segment in segments:
|
55 |
+
row = {
|
56 |
+
"start": segment.start,
|
57 |
+
"end": segment.end,
|
58 |
+
"text": segment.text,
|
59 |
+
}
|
60 |
+
if word_timestamps:
|
61 |
+
row["words"] = [
|
62 |
+
{"start": word.start, "end": word.end, "word": word.word}
|
63 |
+
for word in segment.words
|
64 |
+
]
|
65 |
+
print(row)
|
66 |
+
end_time = time.time()
|
67 |
+
print(f"Transcription finished in {end_time - start_time:.2f}s")
|
68 |
+
```
|
69 |
+
|
70 |
+
|
71 |
+
### Monkey-patching faster-whisper 0.9.0
|
72 |
+
|
73 |
+
Make sure you have the latest version:
|
74 |
+
|
75 |
+
```shell
|
76 |
+
pip install -U 'faster-whisper>=0.9.0'
|
77 |
+
```
|
78 |
+
|
79 |
+
Then, use it with some little changes:
|
80 |
+
|
81 |
+
```python
|
82 |
+
import time
|
83 |
+
|
84 |
+
import faster_whisper.transcribe
|
85 |
+
|
86 |
+
|
87 |
+
# Monkey patch 1 (add model to list)
|
88 |
+
faster_whisper.utils._MODELS["large-v3"] = "turicas/faster-whisper-large-v3"
|
89 |
+
|
90 |
+
# Monkey patch 2 (fix Tokenizer)
|
91 |
+
faster_whisper.transcribe.Tokenizer.encode = lambda self, text: self.tokenizer.encode(text, add_special_tokens=False)
|
92 |
+
|
93 |
+
filename = "my-audio.mp3"
|
94 |
+
initial_prompt = "My podcast recording" # Or `None`
|
95 |
+
word_timestamps = False
|
96 |
+
vad_filter = True
|
97 |
+
temperature = 0.0
|
98 |
+
language = "pt"
|
99 |
+
model_size = "large-v3"
|
100 |
+
device, compute_type = "cuda", "float16"
|
101 |
+
# or: device, compute_type = "cpu", "float32"
|
102 |
+
|
103 |
+
model = faster_whisper.transcribe.WhisperModel(model_size, device=device, compute_type=compute_type)
|
104 |
+
|
105 |
+
# Monkey patch 3 (change n_mels)
|
106 |
+
from faster_whisper.feature_extractor import FeatureExtractor
|
107 |
+
model.feature_extractor = FeatureExtractor(feature_size=128)
|
108 |
+
|
109 |
+
# Monkey patch 4 (change tokenizer)
|
110 |
+
from transformers import AutoProcessor
|
111 |
+
model.hf_tokenizer = AutoProcessor.from_pretrained("openai/whisper-large-v3").tokenizer
|
112 |
+
model.hf_tokenizer.token_to_id = lambda token: model.hf_tokenizer.convert_tokens_to_ids(token)
|
113 |
+
|
114 |
+
segments, transcription_info = model.transcribe(
|
115 |
+
filename,
|
116 |
+
word_timestamps=word_timestamps,
|
117 |
+
vad_filter=vad_filter,
|
118 |
+
temperature=temperature,
|
119 |
+
language=language,
|
120 |
+
initial_prompt=initial_prompt,
|
121 |
)
|
122 |
print(transcription_info)
|
123 |
|
|
|
153 |
## License
|
154 |
|
155 |
These files have the same license as the original [openai/whisper-large-v3
|
156 |
+
model](https://huggingface.co/openai/whisper-large): Apache 2.0.
|