--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-stance results: [] --- # roberta-stance This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1034 - Accuracy: 0.6232 - Precision: 0.6077 - Recall: 0.6301 - F1: 0.6127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 46 | 1.0695 | 0.5184 | 0.1728 | 0.3333 | 0.2276 | | No log | 2.0 | 92 | 1.0372 | 0.5184 | 0.1728 | 0.3333 | 0.2276 | | No log | 3.0 | 138 | 0.9757 | 0.5746 | 0.4121 | 0.4214 | 0.3711 | | No log | 4.0 | 184 | 0.8826 | 0.6063 | 0.5820 | 0.5298 | 0.5423 | | No log | 5.0 | 230 | 0.8429 | 0.6166 | 0.6159 | 0.6011 | 0.5824 | | No log | 6.0 | 276 | 0.8153 | 0.6472 | 0.6257 | 0.6376 | 0.6294 | | No log | 7.0 | 322 | 0.8600 | 0.6559 | 0.6492 | 0.6427 | 0.6315 | | No log | 8.0 | 368 | 0.8912 | 0.6299 | 0.6138 | 0.6159 | 0.6108 | | No log | 9.0 | 414 | 1.0091 | 0.6161 | 0.6048 | 0.6345 | 0.6084 | | No log | 10.0 | 460 | 1.1034 | 0.6232 | 0.6077 | 0.6301 | 0.6127 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0