File size: 1,807 Bytes
a4a94e3
 
 
 
 
 
 
 
 
 
 
 
855078c
a4a94e3
 
 
 
 
 
 
855078c
a4a94e3
d1b752f
 
 
 
 
a4a94e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b752f
a4a94e3
 
 
 
 
 
 
 
 
a321144
 
d1b752f
 
 
a4a94e3
 
 
 
6e00a6f
a4a94e3
d1b752f
6e00a6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-portuguese-cased-finetuned-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-portuguese-cased-finetuned-ner

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0039
- Precision: 0.9208
- Recall: 0.9633
- F1: 0.9416
- Accuracy: 0.9990

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 444  | 0.0173          | 0.5752    | 0.8261 | 0.6782 | 0.9950   |
| 0.0623        | 2.0   | 888  | 0.0060          | 0.8691    | 0.9565 | 0.9107 | 0.9984   |
| 0.0083        | 3.0   | 1332 | 0.0039          | 0.9208    | 0.9633 | 0.9416 | 0.9990   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0